ISO 9001:2000

9210-2 & XPERT2
DATALOGGERS

SDK Manual

SDK Part No. 8800-1171
Version 3.11
November 17, 2014

Sutron Corporation
22400 Davis Drive
Sterling, Virginia 20164
TEL: (703) 406-2800
FAX: (703) 406-2801
WEB: http://www.sutron.com/

http://www.sutron.com/

Table of Contents

1

2

3

2.1
2.2

3.1

3.2

3.3

3.4

INTRODUCTION ..ottt r bRt E R Rt b e Rt e Rt Rt n et n s 1
INSTALLING AND CONFIGURING THE DEVELOPMENT ENVIRONMENTccoviiinniiiieenseeseeieies 1
INSTALLING AND CONFIGURING VISUAL STUDIO 2008 (VS 2008)ccveveirreiiinieieresieenesiee e 1
UNINSTALLING THE DEVELOPMENT ENVIRONMENTcouttiteiiiatiienraresesraseesnesesessasee s esnesse s snssesesnenesensesns 2
CREATING SLLS ..ottt bbb bbb bbbt bt bbbt bt b e bt e bbbt e bt e bt e bt et bbbt et 2
OVERVIEW. ...tttk sttt h kbt e bt bbbt h s Rt E 4R e R b1 e e bR AR e e R £ bt e bt e e et e b sh e e R e bt e bt e e e st nr s 2
3.11 SELUP BIOCKS DEFINEA ...ttt ettt b bbbt b bt eb e nn e ebenre s 2
3.1.2 Property Pages DEfiNed..........ocoiiiiiiiie bbb 3
3.13 Control Panel ENtries DEfINEA. ..ottt s sne e e 4
3.14 The Basic Steps t0 Creating an SLLcooiiiiiiiiiiiieiseee st 5
3.1.4.1 Create new project from teMPIALEccveiiiii i 5
3142 AQA COUE. ... ittt bbbt E bbbt E bR R R R Rt Rt R e r e 6
3.1.4.3 Compile, Link, and DOWNIOAcccveiieiiiiiiie et ste e sreebe e snvesneenreens 6
CREATING SETUP BLOCKS. ... ittt ittt bbb bbb bbb n e 6
3.2.1 CONSIIUCTON ...ttt b e b e e b e e b e bbb e b e b e e e sb e e nr e 6
3.2.1.1 Setup BIOCK PrOPEITIESecveiieceiectie sttt ettt te et e st et e e e e tessaesteesaeesaeenteeneesneenreenreens 6
3.2.2 SNOWPTOPEITIES() ..ttt ettt ettt bbbt b bbbtk s bbbt bt ebe s bt et s b e e et nr et ebenr e 7
3.2.3 INTETAIIZE() +veiveeeeeet bbbt bbb bbbt b bbbt b ettt 8
3.24 EXECULE() vttt ettt b et bbbt bt b e bt b bbb b e bR bbbttt 9
3241 Execute() TOr SENSOT BIOCKScviuiiiiiiiiiiiictiitesi ettt 9
3.2.4.2 Execute() for Passive, NON-SeNSOr BIOCKS...........couiiiiiiiiiiiiicisese e 10
3.2.4.2.1 ldentifying Input and OULPUL INAICESccvveveiieiie e 11
3.2.4.3 Execute() for SCheduled BIOCKSc.ccviiiiiieiice ettt nte e 11
3.25 SEOP() +-vvereerrere ettt E R R R R R R R R R e R R bR Rt R Rt b e n s 13
3.2.6 F N e T (o R U] o TSRS 13
3.2.7 SELCNANNEISINUSE() +..veeveete ettt e st e e s te e be e beesaessaestaesteesaeanteenseaneesreesraens 13
3.2.8 ClearCRANNEISINUSE() ... veeveeie ettt ettt e st et e et e e beesaesseesteesteesaeenseanseaneesreessnens 13
3.29 GEIMOAUIETYPE() -+ vttt bbb bbbt b e bbb bbbt b et st 14
3.2.10 GEIDEVICETYPE() c-veveveeereitirteieetestes et st ettt ettt bbbtk b et bbbt b bbbt b e bbbt b et be e 14
3211 GEtMOUUIEPTOPEITY(). v erevitereatirteietist etttk bbbttt bbbt be e 14
3.2.12 GEtChANNEIPTOPEITY() vovvevetereetiiteietist ettt bbbkt bbbttt bbbt bbb 14
3.2.13 AsSIGNDEfaUItCRANNEI()......viiieiieiieirt bbb 15
3214 EVENEEXEC() . .veveiteeeteitinteieete ettt stttk etk kbbbt b bbbttt b et 15
3.215 GetIndexOfDataTOCAlIDIAE()eeiveiie ettt be e e e e e sreesreebeenes 15
0 LIV o] oTo] 5] €101 (= 1] o] - L =T) [P SRS 15
I A €161 [@r> [o] > (- (SRS 16
0k S TV o] oTo]] A O1 0= 111 o] - L =T) ISR 16
3.2.19 1O 1110 - LT) USSR 16
I O B O 1]] - (=T) ISR 17
3221 GELSCREAUIEINTO() ..vevieieitiiteiet ettt bbbttt bbbttt bbb 17
3.2.22 SEHUP BIOCK TCOM .ttt bbbttt bbbttt bbb 18
3.2.23 Adding Multiple BIocks to & Single LIDIary ..o e 18
3.2.24 Adding INPULS aNG/OT OULPULS.euviiiieiriitirieiet sttt bbbttt 18
3.2.24.1 Update INpUt/OULPUL MENOUS.........c.iiiiiiiiiiiieiee e e 18
3.2.24.2 Update Output BUffering SChEmME ..o 19
CREATING PROPERTY PAGES......oitiitiiiiitiiiiieie sttt sr e 19
3.3.1 Adding Multiple Pages to a Single LIDFArY ... s 19
CREATING CONTROL PANEL ENTRIEScciiiiiiiiiiiitiit sttt 20
34.1 CONLIOl PANEI BULLONS ...ttt ettt ettt e e e bbbt e e nn b e 20

3.4.2 Making and Saving Changes t0 SEtUP Data..........cccevivierieieeieiesese e se e et see e 20

3.5 CREATING “EMPTY” SLLS ...ttt en s 21
3.6 SIGNALING AN SLL ON APPLICATION INIT/EXIT ..ottt 21
O AN OO OSSO 21
4.1 ENGINE AP ..ottt b h bR R R R Rt 21
411 THE ENQGING ODJECE ...ttt b et b e bbbt b e bt b e b e abenne s 21
N 4 10 - T (Y | OSSPSR 21
4112 NSEOPEVENT ...ttt bbbt bbb bbb bbb bbb bbbttt 22
I T |V oo (0] =] T OSSO PSRRORRPRN 22

A 114 RUN() ittt R R Rt R Rt R 22
A.115 SEOP() e vreerererenrererinr ettt Rt R et R et R e 23
et T 1= = (W a1 T) SRS 23
N 1= 1 Tod 1 T=To [1= TSRS 23
I N) (=1 T [0 =T SRS 24
41019 LOCKGUI() ottt 25
4.1.1.10 UNIOCKGUI() .ttt bbbttt bbbt b 25
41111 AULOSAVESEIUD() - veveveeereete sttt ettt b bbbt bbb bbbt bt b et b bbb 25
41112 LOCKSEEUD() vttt ettt bbbttt bbbt bbb 26
41.1.13 UNTOCKSEIUP() -ttt bbbt bbbttt b e 26
41.1.14 SEALIONNAIMIE ...ttt b et b bbbt b e b et eb e s b e e ebenr e ebenneneas 26
41.1.15 ATBIMIMGILISE ..t b bbbt e et b et b et 27
4.1.1.16 TAGLISE 1.ttt R bR bRt R et e 27
4.1.1.17 0T S = To () SR 27
4.1.1.18 L0 o T =T]) SR 27
4.1.1.19 QYA - T 0T S OSSP 28
4.1.1.20 FNATEIE() vttt bbb bbbt b et 28
41121 REISEBAIEIT() ...ttt b bbb bbbt bbbttt b e b 28
4.1.1.22 CHEAIAIEIT() ..ttt bbb ettt b e bbbt b e bbb et s bt ebenb e e abenneneas 29
4.1.1.23 ChANGEATAIIN() ...ttt ettt bbb bt et et nr e b nrene s 29
41.1.24 CLEAIATAIMI() 1.ttt b bbbt b et b e bt e bt s b e ekt bbb ekt nb e e et e nn e e abenreneas 29
4.1.1.25 ENADIEATAIM() ..ttt 30
4.1.1.26 DiSADIEATAIMI() ...ttt bbbttt b 30
4.1.1.27 F A g 4 =g o] L= [TSRS 30
4.1.1.28 (€T AN F= T] v LU) USSR 31
4.1.1.29 FOIMOOLISE. ...ttt bbb bbb bbbttt bbb 31
4.1.1.30 (@) [olo | I T oL €1-1 ¥ AN =1 [To | L ISR 31
41131 IOMOULISt.GEtDIGITAITO() ...v.vveriieeiisieteie ettt 31
4.1.1.32 (@1 [oTo | I T oL €= { BT[] F- Y [SO S PR 32
4.1.1.33 IOMOALISE.GELIOMOU(). ..t evereterieieeteseee ettt bttt 32
41.2 EXpOrted ENGING FUNCLIONSc.oiviiiiiiieiciee bbb bbb 32
4.1.2.1 ChangeNUMBErDIGINT()......cviiiiiiiriiiiiret bbbttt 33
4122 ChangeNUmMDErDIGREAI()ccoiiiiiriiiiiieieree bbb 33
4.1.2.3 FIlENGMEDIG(). . ettt bbbt bbbt bbbttt 33
O S (- o (o | I o T SR SPR PSP 34
O R ST |V [T TSY= Vo =T 0 [) ISP SPPPOR 34
4.1.2.6 PASSWOIADIG() v -veeveemeemieitertesie sttt sttt bttt be sttt b bttt be e e e e e b sbeebenbe e bt ene e e e b nae 35
4.1.2.7 SEtDALETIMEDIG() -.eeueeeereerterieeti ettt bbbttt bbbt bt e e et et sbeebesbeebeeneenee it nae 36
4.1.2.8 SEITIMEDIG() - et eeeteeeeie ittt ettt ettt b e st et e b bt e bt bt bt e s e e b e b sbeebesbeebeeneeneebenaen 36
4.1.3 (O - 1o IO F= TSRO RT R 37
O R T R O I o | IO OO 37
O T O I Vo RSOOSR 37

O R T T 1= 1= 0 1= TP SO PRTTOROROO 37
O R 1 S O 4 o3 (- T 1=) OO PR 38
4.1.35 GEINUMWVAIUES() c.eoveeereetiieeiietiite ettt ettt ettt ettt bbbt en ettt enes 38

O R J T © =) Y T4 1 ISR 39

4.2

I 1= 7 AN - T o (SRS 39
4.1.3.8 GEETAG() +-ervevererrerererrereesresesess et sttt sr ettt b et ek s bt r bR bt et R R Rt R et r et R e 39
4.1.3.9 SEETAG() - erverererrereerrerienres sttt R et R e 40
4.1.3.10 SEAMTTAG() - ververerrerrere ettt ettt b et b bbb bt et b e bbbt e e bbbt eb et b nr e enenr e 41
41311 SEOPTAG() +vevereererreeereeterr ettt sttt r ettt bbbt e e st eb b e e b s bt e bt e b st bt b s e bt e e st bRt b R e bt nr e enenr e 41
4.1.3.12 EVAITAG() -+erveveerereeieet ettt bbb bbb bbbt b e 41
4.1.3.13 ISCUIDAIATAG() «-vrvevererrereetentes ettt ettt ettt b bbb bbb bbbt s ettt 42
41314 ISVIBWADIETAG() -+ ev vttt bbbttt 42
414 CALAIMMOE CIASS ...ttt bbbt bbbt b bbbt e bt bbbt bbbt bbbt b 42
e O Y -1 4411 o |) SRS 42
e 0 A F. T .11, [(PSSO 43
S B @ =Y [S1-Y AN [o 1) SRS 43
S @ [1= VY 1= o { (SRS 43
T @ T o [0 o TaTo 1= AN F- T o SRS 44
I @ T o == o] [=Y AN F- T 1 T PSSO 44
4.1.47 ONDISADIEAIAINM() ..veveiiitiiteiiiii ittt bbb bbbt 44
O B €= 131 = LD) TSSO T OO PTS PP PTOTURUOON 45
4.1.4.9 ONENGINERUN() w.ovtitiieiiitiiteiite ettt bbbtk b bbbt b ettt et 45
4.1.4.10 ONENGINESTOP() +vververeeterreieetesi ettt sttt sb ettt et b et eb bbb et sb et ekt nb e et e nre e abenreneas 45
/O IMIODULE AP ...ttt bbb bbb bbbt bbbt b e bbb bbbt b e 46
421 L@ oSSR 46
O N R - 1 (=0 1] SRRSO 46
O Y (0 o LT [N 1= { ST SUSSOR 47
O e T U D (@ T 01T [N 1= (PSSR 47
O S N U D (@] (=0 [0 1= { (PSSR 48
4.2.2 N = oo | [SRR 48
4.2.2.1 SingleVOIAgEREATING() .evervirereeriitirtiiitirt ettt bbbt 49
4.2.2.2 DoubIeVoItageREATING() ... e veverrereetirieietirieiet sttt 49
4.2.2.3 SiNGleCUrrentREAAING() e veverreeetirieiitirieiet sttt bbbt 50
4.2.2.4 SingleCurrent420mMaREAAING() overveerrerriieiirieeeie sttt b bbb 50
4.2.25 SingleResiStanCEDCREATING() ..vevveververerririiiitirieieie sttt ettt 51
4.2.2.6 SingleResiStaNCEACREAUING() «.vevviverreeiririeietirteiet sttt bbb 51
4.2.2.7 SingleThermiStorREAGING()eveeveeieiieiiesiee st s ettt s et e te e e s e e sreesbeesteenaesnseenbesreesreens 51
4.22.8 RMYOUNGREAAING() ..viivveiureirieiieieeitesiesee s eeste s teeste e st e st e staesteesteeteasaessaessaesaeesteeseansesnsesssesseesseens 52
4.2.2.9 SetConfiguratioNGaIN()ccveiveeireeiiiie e siee sttt ettt et s et e e steeste e e s e e s raesaeesbeenteenseensesnresraenreens 52
4.2.2.10 SetConfigurationSINGIEENAEA()eevveeieiie et 53
4.2.2.11 SetConfigurationDifferential()cocveii i 53
4.2.2.12 SetConfigurationEXCItatioNHOIAON()oooviiiiiiece e s 53
4.2.2.13 SetConfigurationEXCitationHOIAOT()ocoriiiiiiiicc e 54
42214 SEtEXCItAtIONCNANNEI() ...vcveiteieeieie et b et sne e 54
4.2.2.15 SEtEXCItAtIONVOIAGE() .+ evetereeteite ettt b et sbe e 54
4.2.2.16 SEtEXCItatioNVOIAGEON() ...veeereiteieeieeie ettt et b e et b e 55
42217 SetEXCItatioNVOIAGEOTT() . ..eiveieieiieeeee e 55
4.2.2.18 T 1L TN\ o] (o o) USSR 55
4.2.2.19 SEtWaArMUPDEIAY() ...vvevveiiieiie ettt be e te et e e e nb e s taesba e teesbeenaenneenneas 56
4.2.2.20 SEPOIYAGJUSE() - veventeierist ettt bbbt bbbt b bbbkt b et 56
42221 CMUASELAUXL) ottt ettt ettt b ket e bbb bbbt b ekt s b et et eb bt sbebe e e 57
4.2.2.22 CMAPUISEBOUL() ettt sttt sttt sttt bbbt e e bbbttt e e b et saeeb e b e ebe e b e et e e sae e 57
4.2.2.23 REAARESISTANCE() ..+ttt ettt ettt sttt ettt e ekt b e b et e e bt et e e e b sbe b e s be e bt eneenenbennen 57
4.2.2.24 REAAFTEGUENCY() .+ vttt etttk b ettt sttt st 58
4.2.3 DIGIEAITO ...t b et b bbbt bbb e 58
4.2.3. 1 REAACOUNT() .ottt ettt ettt ettt ettt ettt eb st et b et et b e bbbt et et ne st nnenen 58
4.2.32 REAdCOUNTANITIME() ..eoveeereitireerietirieeetest ettt sttt ettt sttt bbbttt b et et eenes 59
4.2.3.3 ReadFiltered INPUIDATABITS() «.....eveverreeiririeiiirieieie sttt 59
4.2.3.4 ReadAllFilteredINPUIDAtABILS()eoveeiririeiiirieieiiseesi et 60
4.2.35 SetSAMPIINGSPEEA() - veuveteiterieiti ettt ettt bbbttt ae bbb bt e e e aenae 60

4.2.3.6 SELLINEBASINPUL() «.ovvereeieiieiese ettt e sttt st eene e s e e e st e stesreeneese e s e aesaesaesreeneereeneenenrens 60

4.2.3.7 SELLINEBASOULPUL() «vevvetetiitiieeeeiee it e et e e e steete et et e st et e e s taesa e s e te st e s besteaneeseenseeesaestesreeneeseensetentens 61
R R BT (O 101110 I L) TSRS 61
4.2.3.9 INVEITIO() c.eeieitiieeieit ettt e bbb bbb bbb bbbt R bt bt et n s 61
4.2.3.10 UNINVEITIO() ottt bbbttt bbbt bbb 62
42311 SEtASSNATTENCOURI() .. .veveeeiteieeieete ettt b et eb e 62
4.2.3.12 SOUASCOUNTET() vttt ettt sttt sttt ettt b et b et b bbbt eb e nb e bt s b et eb e bt eb e n b e ebenr e e ebenreneas 63
4.2.3.13 CONFIGUIBFTITEIS() .ttt b et b et b bbbt sr e b nn s 63
42314 SEtSENSILIVIEYHIGN() ... vveeeiectecee ettt bbb 63
4.2.3.15 SEESENSIEIVIEYLOW() 1.vvevrerieieiitesie ettt sttt ettt e e e e e et e besaestesteeneereenseeeneenean 64
4.2.3.16 WA E: Vg 210 T o]] =l oY TS 64
4.2.3.17 WA E Vg (@ g1 210 i g1 o o T=T]) S 65
4.2.3.18 (@00) 110U =T) SRS 65
4.2.3.19 PUISEOUL() vttt bbbt 65
4.2.3.20 (=T U0 | g T 10 { (USSR 66
42321 REAAFTEGUENCY() vttt bbbt bbbttt bbb 66
424 DISPIAYIO ...t bbb 67
A.2.4.0 WWITEB() coeiveeeteet ettt b bt bbbt bbb bbbt b bbb et n s 67
4.2.4.2 WISHINGTOLCD() «veveueiteieeiiitisieiet ettt b bbb bbb bbbttt n et 68
4.2.4.3 DISPIAYLINES() t..eeveitiieiiitiitetiete sttt sb bbb bbbt 68
4244 SROWGCUISOT() cvuveveiteeeieetesteteete sttt ettt ettt ettt b et b bbb bbb bbbt b et b bbbt ettt 69
O ST o 1T (=T @A N0 (S PSUPSOR 69
o o Y - Y1 =] 1101 (] 0 [T £]) RSP SU PSS 70
O S Y (o o] =1 {10 T a0 (OR8] o]) ISR 70
S O [T T 11 o] - Y/) ISP SUPSOR 70
4,249 DISPIAYOTT() weuviretiirieiiiiieteirie ettt nas 71
4.2.4.10 KBYPIESSEU() .-tttk bbb bbb bbbt bbb 71
42411 PIESSKEY () vttt ettt ettt bbbt bbb bbb bbbt b e b b 71
42412 FIUSNQ) -ttt b bbb 72
42413 REA() .+ttt b R bbbt bbbt b e 72
S 111 [0 OO 72
T 111 1= () OO 73
4.2.4.16 o LA 1Yo T ISR 73
4.2.4.17 EGIESEING() -vrvevereretetiriet ettt bbbt bbbt bbbt bbb 74
4.2.4.18 EGITTIME() -ttt b bbbt b e bbbt s 75
4.2.4.19 1] T € T USSR 75
4.2.4.20 (OO T To0 1 1 USSR 75
4.2.4.21 L I LT TV USSR 76
4.2.4.22 GEETIMEOUL() vttt eb e et bbb bbbttt b et eb e bt eb e nb e e et e nb e ebenneneas 76
4.2.4.23 RESEITIMEOUL() ..ttt bbbt bbbttt b et b 76
4.2.4.24 TAMEUOUL() + vttt b bbbttt b et e bt b bbb 77
4.2.4.25 BITOT() ettt bbb bbbttt b 77
425 L0 101 oo OSSR 77
ST R € 1= 7 AN g = [T | 1) ISP SUPPOR 77
T A € 1= | B =LY o=l N/ o 1= (ST SP PSR 78
ST T € 1= {1 o T = | S PSPR PSR 78
4.2.5.4 GetMOUUIENUMDEL() ..uviviitiiieitieieie ettt ettt ettt bt bbbt e e et e b b e sbesbeebeese e e e nbenae 78
4.2.5.5 GEESEITAINOD() ettt bbbt e et bt bt bt bt e R e e b et b e ebenbe e bt e n e e e e b b 79
4.2.5.6 SEIEVENTHANAIEI() .eneiieieiieeiee e bbbttt be b bbbt e e e et e 79
G S 115 2 o USROS 79
43.1 RT3 OSSR 79
4.3.2 K714 @11 To OO OO 80
4.3.3 (010] | [Tol D 1 =T OO OSSPSR 80
B34 SDIADOIT() c.ooevooeeereoeeeeeeeseeseee e eeessee s s e e 81
435 ClEAISDIADOIT() ..veveeeteite ettt ettt et e b et b ettt b e bbbttt e bttt be bt ettt ere st e 81
44 UTILITIES AP .o bbb bbbt et e e sr s 81

Vi

441 =T oT0 Y =T o = To < V=T) SRR 82

401 DEBUG() . e eeeremerrererirreiies ettt n e 82
VL7 T o1 T) SRS 82
o e T =1 ¢ 0] TSSOSO TP TSP PP PTPRUPUPOON 83
A A LA FAEAI() ettt bbb h bR b E e R bbbt R et bbbt 83
AALE SEAEUS() «evereereerereereetene ettt ettt ettt etttk b e bttt b b b ke b R R bR R R R e bbb bbbt n s 84
4416 MAINTENANCE() .. .veveiteeeiietiit ettt ettt ettt bttt b bbbt bbb bbb bbb bt et s bt et n bt b e 84
o A (o] (=T) I OSSOSO T SO P T PO PP TRUPPPOON 85
418 SEFIITEI() c.eoveieiieeteit ettt b bbb bbb bbbt b et b et 85
A.4.0.9 GEIFIIEI() ..eeveeireeecre ettt 86
4.4.1.10 HOOK() 1+ttt Rt 86
44111 UNHOOK() 1ttt 87
442 (O T Y =T g F=To (=] 04 [=] o PP P PO URT ST PPPPRTT 87
B2 1 CUSEIS ..ot e s 87
4210 AU iRttt 87
A4.4.2.0.2 REMOVE() w.viiteietiiteieeteete ettt ettt ettt sttt h et b bbbt b b bt e bbbt b b e bt bbbt bt e bt eb et b e b n et b e 88
A.4.2.0.3 GELUSEI() ettt bbb bbb et b e bbb bbb bbbt b e bbb b 88
44204 UPAALEUSEI() c.eeveiteieiiiteieeeit ettt bbb bbb bbb bbbttt eb e bbb et b e 89
44205 GELUSEICOUNT() «evereeretereetinteiieieste ettt sttt b ettt b et b e et b e bbbttt eb e e et bbb 90
44206 SEIFITEI() .cueiteieieiee ettt bttt bbb 90
44207 REMOVEFTIEI().cueiveiiiiite ettt bbbt b e 90
o S T AV £ 1T 10 7T o AN U 1= S 90
O N I IV T 1 1Yo o [S 91
o N O B EAV £ 11 To L L= ¢ € {00 o PSP 91
442101 COMMIL() ouvireriiieereeeiet ettt bbbt e et b bt e bbbt b bbbt nren e 92
B.4.2.2 CUSEI .ottt bbb b bbb b e R R R R R R R R e R R e R Rt R Rt R e e R nas 92
44220 GEINAIME() «eveieieiteieete ittt bt b et b b bbb bbb bbbttt b ettt b et b 92
4.4.2.2.2 GEIPASSWOIT() «veveeetiiteieetiitesie ettt ettt b e et b bbb bbb bbbt b et b b e b 92
4.4.2.2.3 GELUSEIGIOUPD() -euververeitereetentesieitate et sttt sttt ettt sttt b et b ettt b e e bbb bbb e bt bt e bt be et e b 93
44224 GetTimEOULINTEIVAI()c.viiiiieiie ettt 93
4.4.2.3 AJUCUSIOMGIOUD() -uveverirereitirtesietinteeete sttt sttt sttt eb st e bbbt bbbt bbbt nb e bt bbbt st enes 93
4424 AddCuStOMCOMMANAPAISEI() ...cuvivitiieieirieietirieiet sttt ettt sb ettt b 94
443 Serial COMMUNICALIONS.......c.ciriieiireie ettt r e nr e 95
e T R O3 T4 -1 [0 1T 11) SRS SPPPOR 95
e B O3 T4 -1 [0 1 11) SR SPPPOR 95
e T T @ o112 100111 1 11 SRS SPRPSOR 96
e B A O [0 TY=T 0 1 1) ISP SP PSR 96
e B T (1 0T o) SRS 96
4.4.3.6 SEtCONFIGUIATION() ...eviveitiieeiiitiite ettt bbbttt bbbttt 96
4437 SELCOMIMPOIT(). . cveiteeereitiitetiitest ettt ettt bbbt e bbbt b bbbt b bbb n et nb e enes 97
4.4.3.8 SEIBAUARALIE() .o.veveiteeeieitiieetiite sttt etttk b bbb bbb bbbt bbb 97
A4.4.3.9 SEETIMEOULS() s+.veveiteeeteetereeteete sttt ettt ettt bbbt b et b bbbt bbbt nb bbbt e et enes 98
4.4.3.10 INPUE FUNCTIONS ..ottt ettt bbb 98
4.43.11 (@0 11 U 1 0 o] T OSSPSR 99
4.4.3.12 NUmMberByteSINPUEBUTTEI() ...veeiee e 100
4.4.3.13 NN =T T=To [USSR 100
4.4.3.14 FIUSRINPUE ()1t ete ettt bt b ettt b bbbt ne e e e et e 100
4.4.3.15 GEEHANAIE() ..+ttt bbbttt b e b et eb e bt e e e et e 101
4.4.3.16 WVAIEONRX() 1+ttt bbbttt bbbt b bbbt b bbbt e s 101
44317 WRITFOrTXEMPLY () +eevevereiterieiieie ettt ettt sttt bt et nn e ebenreneas 101
444 REMOtE COMMUNICALIONSeveitiieiieti ittt sttt bbbttt eens 101
4441 ReMOE SSP OPEIALIONScuviviieiiitiitetietestetete sttt sttt st ettt st e e abesb et ebeseeseebesbeneebesrenea 104
44411 REMOEREGUESL() c.overeerirtirietirtiietiste sttt bttt b et b et be et st e b b 104
44402 REMOLESENA() vovvevieirierirtisietisteiet sttt ettt s bbb bbb e st b et b et e b e st e e b b e e 106
44413 RemMOEWAIMESSAGE() - .vervevereereiririiieiirieniei sttt bbbttt bt 106
4.4.4.2 CSOCKEICOMIM CIASS ... ittt sttt sttt e bbbt e b e e e b sbe bt e be et e en e et e eeseenaas 108

Vil

ot O3S T Tod (=1 (@] 1 1 S 108

o O3 T Tod (=1 (@] 1 1 OSSP 108
O B @ o =1 a1 ' 11 OSSP 108
44424 ClOSECOMM()..eiueiuitinietirtesietist ettt etttk b bbbt b bbbt b bbbt b e bbb 109
AA.4.25 ISOPEN() c.eiueitimeiietirtieet ettt bbb b s bbb bbb bbb bbbt b e n e 109
44426 SEtCONTIGUIATION() ..vevvviririeiiiteeetest bbb bbb bbbt 109
44427 SELCOMIMPOIT() ..eiuetirietirtiietirt etttk b bbbt bbbt b bbb b nn e 110
44428 SEIBAUARALE() ... cueitereetirtiieiirteeei stttk bbb bbbt bt 110
44429 SetTimeouts() and SEtCOMMTIMEOULS() ...vcvvveveririeieiirienieiriesi et 110
444210 INPUT FUNCTIONS ..ottt 111
444211 OUTPUT FUNCTIONS ..ottt 111
444212 WIN32 COMM COMPATIBILITY FUNCTIONS ..ot 113
4.4.4.2.13 NumberByteSINPULBUTTEI()......ccviiiiieieiiie sttt 113
o S)Y (- XY= T [OSSR 114
444215 FIUSRINPUE () covveiriirieieseese et 114
444206 GEICHENT () .eveeeuireiietiitiiet ittt b bbb bbbt b e b b e 114
444207 WAITONRX() 1.veveeeereenietirteieie sttt stttk b bbbttt b et bbbt b e b 115
444218 WAaIFOrTXEMPLY () voverreieirieiitisieeise et bbbt 115
444219 SELCAPTIUIE() ..veueeveeireetirtes ettt etttk b et bbbt bbbt b ettt b et b 115
444220 LOCKCOMM() 1ovviiiiiiiitiitiieie sttt bbbk bbbt ettt b et b e 116
444221 UNLOCKCOMM()..cuiuiititiniitistiietiste ettt bbbt bbb b 116
A.4.4.2.22 LOGOUL() +veuvrerienteieieteseresteie sttt ettt sttt b et se bbbt nb bbbt b et bRt e bt n bt nren 116
A.4.4.2.23 SEEHOSE() c.enviveriiieeiesieieeis ettt b b bt 117
444224 GEIPOILISE () ..evivereieeteiirieteesieiee sttt bbbttt et et 117
O A S €= (0o 710 014 0] 1Y OSSR 118
O A B 1= (0] 110 o1 1] 0 () OSSR 121
444227 SetEXtendedCoOmMMANGS () ..eoveveirriieiriiieiisie et bbb 121
4.4.42.28 RUNCOMMANG () -evireiriiinieiinieieiist ettt bttt b et b bbbt be b 122

445 TRESOUICEKEY ...ttt ettt r e sre e nr e 122
4.4.6 TTIME ANA TTIMESPANvcie ittt bttt b e et b e bbb bbbttt ab et sbe e b b 122
447 EXPOIted ULHS FUNCHIONS ..ottt 123
AAT.1 SETOTIME() eereeereitereetiite ettt ettt sttt b e bbbt se et b e s e e stk s b et e bt s et eb e s b e st ebesb e s e ek e st e st ebe st eneebenre e 123
4.47.2 SHTOTIMESPAN() .ureiuriirieitieitiee et see s eeste e s et et e s ae e s te e be e te e teasaesseesteesteesseanteesseasseaseesteesseeseesnaenrens 123
AAT7.3 SETOMS() ceoveiiteiiiiteteiet etttk bbb bbbt b ekt b bt e e bt b bbb b bbbt nb b et 123
AAT A IMSTII() ettt bbbt bt b bbb bt bbb bbbt bbbk b bt n e 124
4.5 SETUP AP e 124
45.1 F Yo o] [Tor U o] I = o] £ SUSUUOSPR 124
5.0 1 INIESEEUP() . vevenerrereentetei ettt ettt bbbkt e bbbt b bbb R bbbt bbbt 125
4.5 1.2 REAASEIUP() cvevereereiteeetiitesieie ettt sttt ettt sttt b etk et b e bt b e bt b e s bt b e etk r et b e r et r e 125
A.5. 1.3 WWITEESELUD() vttt sttt ettt b e ettt b e bbbt b e bt b e s b e e ebesb e st et nbe s e ebenre e 127
A5 14 GELSEIUPTAY () «-veverrererrerrermeierterieie sttt e et sttt ettt ebe e st b e s e e st eb e s b et ek e s b e st ebesb e st ekt s b et eb e st e st ebe st eneebenrenea 128
452 CXMLSELUD MEENOUS ...ttt ettt b et b e 128
4521 WIIESTAITTAG() +oveevevereerereereeterteeste ettt sttt sb ettt st b e bbbt ekttt eb e nb et eb e s b e st ebenreseebenrenea 128
VLV €1 (=1 =t oo 1 I Vo) USSR 129
4.5.2.3 WWIIETEXE() eveueireieiiteteietet etttk b bbbkt b bbbt r b 129
A8 LOG AP ..o bR R R bR R R kAR bRt bR bbbt b s 129
4.6.1.1 CLOGDESC. ...ttt ettt ettt bbbt bttt R Rt Rt bt bR r e eh e e bt e bt e be e aenneas 130
A.6.1.1.1 CLOGDESC() - -veuveeeaueateameeeerteatesiestesieaseeseeasesbesaesbesbeaseaseesebesbeabeabeabeaseeneesbeseeabesbeabeaneeneaneennenbenee 130
N O (- 1T (OSSO USRS UPP 130
TN T @ 1= T OO OO 131
A4.6.1.10.4 GEINAIME() eveeeieitieiiet etttk b bbbt b bbbttt ne b 131
A4.6.1.10.5 SEINAME() c.evieireitiieiiietirie ettt ettt bbbt bbb bbb ne b 131
TN L ST € 1= 13721 () OSSPSR 132
TN O A 11V - o OSSPSR 132
4.6.1.1.8 1SIGNOrEBAIDALA() ...evveveverieiirieieiiste ettt et bbbt b 132
A.8.1.1.9 TNUSE() c.eveeeeiteiereeteiesiete ettt b etk bbbt b bt e bbb bbbkt b et n e 133

5

4.6.1.1.10 APPENASENSOT() trvrereerrerrerieiesieareseeteseessetessessessesssesaessessessessessessessesssessessessessessesesnsensessensenes 133

00 A o o 1= T | N[(USSP 133

4.6.1.2 LOG ClaSS...cccveiiiieiiitiiett ettt ettt st te et et b e e b e b e b et et a e h e e be e ahe e beebeeabeeateebe e be e be e reenreaten 134
4.6.1.2.1 GELINECOUNT() .. cueviuietitesieiisteeet stttk bbbtk b et b bbbt b e bt 134
4.6.1.2.2 CRANGEA() «-evereereetirteiietirt etttk bbb bbb bbbt 134
A.6.1.2.3 FIUSN() ettt etttk ettt bbbt R et eh bbbt Rt nt et e e e e 134

4.6.1.3 LOGCURSOR ClIASSueccuieiieiiiiiieiieiee st e st eiteeee st e e te s teesteeaesaestaesteesbeesbeanbesasesasesteesbaebeesresseesseas 135
4.6.1.3.1 LOGCURSOR() eeiteereemiemieitestesiesteseateie st tesaestestesseeseessesbestessessesseeseessesessessestessessesneessessensenes 135
4.6.1.3.2 ~LOGCURSOR() «eeeteeueereeiiiniesieatiseeteste e te st stestesseeseesestestestessesseeseensesessesbesbesseaseeneeneessessees 135
00 T B €10 (0] =0 1 0] 1 1 I () PSSR 136
T T €10 (o}] o] (ISR 136
T T |V [0 Y= I N SRS 136
T T |V [0 YT Y OSSP 137
T o A |V [0 Y =T L=) OSSP 137
T TR B |V [0 Y1 =Y) SRS 137
4.6.1.3.9 SEAICH ()e.eeueititeiiitiit ettt b bbb bt ne e 138
A.6.1.3.00 ISNOLE () -evevieereitiieieietirt ettt bbbt b bbb bbbt bbb 138
4.6.1.3.11 REAUNOLE ().erveueeueeimietirtesieiisteiett stttk b ettt b et b ettt b et b 138
4.6.1.3.12 REAATIME () 1veueeuereerietirtesieii sttt stttk b bbbt b bbbttt b e b 139
4.6.1.3.13 REAUSENSOE () 1.vvevemeetirtesietinteietiste ettt ekttt sk bbbttt b st b e bbbttt b bbb 139
N0 I T A i 1o oI () PSSP 139
e T L N 1 = 1o 1 (o] 1 (OSSR 140
O e T I €= (O =T o T 1= USSR 140
e T A Y/ oo () OSSR 140
CODING GUIDELINES ... ooe oottt ettt et e st s b e et e e be e e be e e sbeeebe e e ebeeebeeebeeebeeenbeessbeesnbeeestes 141
ST R =1 = 7 TR 141
A €10 1 U [= I =SSR 141
SAMPLE PROGRAMS, SLL’S, AND BLOCKS......cciiiiiiieitieiteeite ettt st sre et v snresasesbaestaesbeebeeaesraesnees 142
6.1 TERMINAL SERVERcciiitttiiiitteeetiteeeeeittteeeeteeessttaeeeaetteeeaaateeeasbaeeeaasbeeeaaabeseesbseeeaasbeeseabseeesstesesastseesastseessnres 142
6.1.1 LT LT LS T=T YT ol o] o S 143
6.1.2 TErMINAISEIVEIIMOE.CPP vttt et b e bbb e b e bbbt bbb e b b 144
6.1.3 TermMINAISEIVEINMOE.N .ot b et b e 153
6.1.4 TerminalServerControlPanelENIIY.CPP .ocvi it 154
6.1.5 TerminalServerControlPanelENTIy.N..........cooi i e 155
6.2 THREADS EXAMPLEcttii i ittt e sttt e e ettt e ettt e e st e e s te e e e s aateeeessaaee e e tbeeeaaateeeesabeeeeaasteeeeanseeeeaaraeeeastseesansneeessnnees 156
6.3 ENGINE APIEXAMPLES. ...ttt itiee ettt s e e e et e e s et e e e st e e e e e bt e e e e eateeeesbbeeeaasteeeeanbaeeessateeesasteeeeanseeeesnnens 157
6.3.1 hStartEvent and hSTOPEVENTooiiiie et te e 157
6.3.2 Y oo [T [T T A TSSO OPRRUPOPPRRUP 157
6.3.3 EXported ENGING FUNCLIONSoiviiiiiiiiie ettt 158
ST A N N Y o T3 (@ R 158
6.5 DIGITAL I/O — TIPPING BUCKET EXAMPLEccutiitiitiiie ettt ettt ettt ste e ebe st eveeavesaresbaesbaesbaebessaesneesanas 160
O 1 B] N I N 1= I =R 162
6.7 REPORT MANAGEMENT AP ...ttt ettt e et e e e et e e e st e e e e eabee e e ebaeeeseateeeesabeeeseseeeesneeas 162
6.8 SERIAL COMMUNICATIONSueteiittieeeiittteesitteeeesitreeeaatsseesassaeeessareaeaassseesassseesasseesaasssessanssesesassesessssseesanssseessssens 162
6.9 REMOTE COMMUNICATIONS USING SSPuuiiiiiiiii ittt e et e e e s ettt e e e et e e et e e e e sabe e e e entaee e e enaeas 163
6.10 [T eT AN o IO ST SUSRRPROON 167
6.11 XLITE DISPLAY HO .ottt ettt ettt e e ettt e e e et e e e st e e e e abe e e e eabaeeesbaeeeaasbeeeeanbeeeesbeaeesasbeeeeanns 168

Table of Figures

FIgure 21: SEUP BIOCKS ..o 3
1o O A o (0] o1 VA o= To OSSR 4
Figure 23: Control PAnel ENTIIES. ..o 5
Figure 24: Scheduled Pulls and Event-Driven PUSNES..........ccccveiiiieiieie e 12
Figure 25: Location of Change BUIONS..........ccuoiiiiiiiiiiieeieeeee e 141
Figure 26: Alignment of Standard BUITONScooiviiiiiiiece e 142

Table of Tables

Table 1: Analog Measure Config REQUITEMENTScciiiiiiiiieieiene e
Table 2: Config Parameters DefINEd..........ocveiieiiie i

Xi

Xii

1 Introduction

The Xpert2 Software Development Kit (SDK) enables developers? to create Sutron Link Libraries
(SLLs)? that extend Xpert2’s functionality according to the developer’s unique needs. The SDK is
most often used to create libraries containing custom setup blocks, property pages, and control
panel entries, but may also be used to create libraries that manipulate ports, files, peripherals, and
any other entity accessible through standard Windows CE operating system API calls.

This document assumes the developer reading it is knowledgeable concerning C++ and Windows
programming.

2 Installing and Configuring the Development Environment

The SDK is intended for use with Microsoft Visual Studio 2008. This toolset contains the compiler,
linker, and operating system libraries necessary to develop for the Xpert platform.

NOTE: prior to Xpert v3.11, Microsoft eMbedded Visual C++ 4.0 was used to develop for Xpert2
and 9210B. This software does not run on any OS above Windows XP, and is becoming very
difficult to find. The software’s feature set is extremely limited compared to Microsoft Visual
Studio 2008. These reasons led to abandoning support for eVC 4.0 beginning with Xpert v3.11.

The steps to install and configure the Visual Studio 2008 development environment follow.

2.1 Installing and Configuring Visual Studio 2008 (VS 2008)
The steps for installing and configuring VS 2008 are:

1. Install VS 2008 according to instructions received with the software
2. Uninstall any previous installation of Xpert2 SDK and/or Xpert2 Platform SDK

3. Install Xpert2 Platform SDK (Xpert2PlatformSDK.msi). You need to run the installer from
a command prompt with admin privileges for the installation to succeed. Steps:

a. Click on command prompt in Start Menu and select “Run as Administrator”
b. Change directory to location of Xpert2PlatformSDK.msi
c. At prompt, type: msiexec /i Xpert2PlatformSDK.msi

4. Add LIB and INCLUDE paths to VS 2008 options to point to the Xpert2 SDK directory
(the directory containing the unarchived contents of the zip file you downloaded from
Sutron)

a. Select Tools — Options — Projects and Solutions
b. Select Platform = “Xpert (ARMV4I)”
c. Enter the paths indicated for “Include files” and “Library files”

! Throughout this document, the term developer is used to refer to the reader of this document, that is, the person
interested in developing an SLL, while the term user is reserved for referring to users of the Xpert.
2 Sutron Link Libraries (SLLs) are standard Windows Dynamic Link Libraries (DLLs) with an extension of “sll”.

5. See the “Template” directory in the SDK download for an example project you can use for
starting your own project. The template project demonstrates an SLL containing a custom
setup block, a custom property page, and a custom control panel entry.

2.2 Uninstalling the Development Environment

The development environment can be uninstalled from the “Add or Remove Programs” control
panel applet. Select the entry named “Xpert2 SDK” and press the “Change/Remove” button.

3 Creating SLLs

“Sutron Link Libraries”, or SLLs, are simply standard Windows dynamic link libraries with the

extension “sll” instead of “dll”. This section describes the process of creating SLLs using the Xpert
SDK.

3.1 Overview

As stated previously, SLLs are most often created to contain setup blocks, property pages, and/or
control panel entries designed by the developer for some specific purpose. But what exactly are
setup blocks, property pages, and control panel entries? A few words describing each of these
things is in order. After that, the steps necessary to create an SLL are defined.

3.1.1 Setup Blocks Defined

A Setup Block is represented visually by an icon on the Xpert graphical setup page. Each block
typically has inputs and outputs. The block performs some action on the data it receives (or it may
produce data) which it then outputs to blocks connected to its outputs. Hence, the connections
between these blocks represent data flowing from block to block.

The Xpert “Engine” is an Xpert software component that controls when data actually flows through
the connections between setup blocks. The flows typically occur either due to a schedule submitted
to the Engine, or due to some asynchronous event like an alarm generated by a connected device.

The figure below shows an example Xpert graphical setup with a variety of setup blocks. The first
line of the example setup has the effect of taking an air temperature measurement at a scheduled
time and storing it in a log. To make this actually happen, the Measure setup block was coded to
submit an activation schedule to the Engine at recording start and, when activated, “pull” the data
from its input which it then “pushes” to its outputs. The AirTemp setup block was coded to take a
measurement and output the resulting data when a block connected to its outputs “pulls”. The Log
setup block was coded to receive data “pushed” into it and store it in the log identified by the block.

| Pzoom | Bowire | +a4d || > Exit |

[JHHE

AirTemp MeasurelLog

TB_W»&_

TipBckt Measuﬂi Log

=

Log

[

Freq VectAvglog [zl

Figure 1: Setup Blocks

In the scenario described above, the Measure block is said to be the “active” block, e.g., the block
that initiates data flow through a chain of blocks. In this case, the active block is a “scheduled”
block (because it schedules itself with the Engine). The other type of active block is an “event-
driven” block, where an event such as an I/0 module alarm can signal a block to initiate data flow.

Active blocks are special in the sense that there is typically only one in an entire block chain. When
active blocks are connected together and one pulls (or pushes) from (or to) another, the pull (or
push) is typically ignored. Active blocks are drawn with thick borders to make them easier to
identify.

When using the Xpert SDK templates to create a setup block, all of the code necessary to create the
shell of a setup block is generated automatically. The developer’s job is to fill-in the details, which
usually means making calls into the various APIs to accomplish the desired task. So, the developer
must know 1) what API call to make, and 2) where to put it. This document’s “APIs” section helps
identify what API calls are necessary. The section “Creating Setup Blocks” helps identify where
those calls should go.

3.1.2 Property Pages Defined

A Property Page is a single tab of Xpert’s property sheet interface. For example, the figure below
shows the “Main”, “Setup”, “Sensors”, “Data”, “Log”, and “Status” property pages. A page is
selected by first selecting the associated tab at the top of the screen.

Simply put, property pages exist to organize related information in a single place (or display pane,
more specifically). As part of an extension to Xpert, if a developer wanted to display some set of
status data in a single, easily accessible location, a property page would be ideal. Fundamentally, a
property sheet is nothing more than a standard Windows dialog.

When using the Xpert SDK template to create a property page, just as with setup blocks, all of the
code necessary to create the shell of a property page is generated automatically. The developer’s
job is to fill-in the details, which usually means displaying and processing standard Windows
dialog controls.

Sutron Xpert - Xpert
Main [Setup | Sensors [Data JLlog |Stats]

-Station Info———— ~Station Status

Date/Time: [..] Recording:
|05/09/2003 13:39:37 o

Station name: [...]
'Xpert ~Confrast

e | « | »
’ Logodrt' I

~Alarm Status:

NormAL [Clear

Figure 2: Property Pages

3.1.3 Control Panel Entries Defined

A Control Panel Entry is a node of the Xpert’s TreeView control panel interface found on the Setup
property page. The figure below shows several standard control panel entries: Graphical Setup, 1/0
Modules, Log files, Self-test, and Setup File. These entries are “standard” because they are
provided by the Xpert application, as opposed to an optional SLL. The entries Coms, EZSetup
Measurements, and Satlink are provided by SLLs of similar names.

Control panel entries are typically used to present configuration data to the user for reading and
editing. For example, the configuration for an attached device could be accessed here.

When using the Xpert SDK templates to create a control panel entry, just as with setup blocks and
property pages, all of the code necessary to create the shell of a control panel entry is generated
automatically. The developer’s job is to fill-in the details, which usually means displaying and
processing standard Windows dialog controls that belong to the dialog created by the user’s press
of “Edit...”.

Sutron Xpert - Xpert
Uﬂiaii | Setup ISensorleata ILog IStaUJsl

oo R

- EZSetup Measurements Bl
- Graphical Setup

- 1/0 Modules

Log files

Satlink o
Self-test
- Setup File ((pert.ssf =

Edit... "

[

=

&

T

Figure 3: Control Panel Entries

3.1.4 The Basic Steps to Creating an SLL

The basic steps to creating an SLL are:

1. Use the template project delivered with the Xpert SDK to create a project within Visual Studio
2008

2. Add code to perform the functions desired.
3. Compile, link, and download the SLL.

3.1.4.1 Create new project from template
To create a new project in VS 2008 using the template project provided, do the following:

1. Copy the entire Template directory to a new directory having the name of the new SLL.

2. Rename each file with “Template” in its name to use the name of the new SLL. Don’t forget the
res subdirectory.

3. For each file in the directory (or for all files in the directory at once, if possible), replace all
instances of the string "Template” with the name of the new SLL. Preserve the case of the
original string so that, for example, "TEMPLATE_DLL" is replaced with "NEWNAME_DLL",
while "Template” is replaced with "Newname". Otherwise, you may need to check the project
settings for the proper preprocessor define for "NEWNAME_DLL".

a. Don’t forget the res subdirectory

By default, the template project contains an example setup block, property page, and control panel
entry.

3.1.4.2 Add Code

The template contains areas where source code typically needs to be added or changed with a
comment beginning with “TODO”. The developer may want to search on this phrase to ensure all
areas that typically require definition have been considered.

The developer’s source code typically makes calls into the various Xpert APIs as well as into the
Windows CE operating system API. The Xpert APIs are documented later in this document. The
Windows CE operating system API is documented in the online help of Visual Studio 2008.

3.1.4.3 Compile, Link, and Download

To compile and link a release version of the SLL (i.e., one that does not contain debug
information), the Solution Configuration must be set to “Release” and the Solution Platform must
be set to “Xpert (ARMV4I)”.

Once the correct configurations are selected, press F6 to compile and link the code, i.e., to “build”
the SLL. The actual SLL file is placed in a directory named “Xpert (ARMV4I)”, under the main
project directory.

After compile and link, download the SLL to the Xpert using the XTerm communications program.
The SLL should be downloaded to the Xpert’s “Flash Disk” subdirectory. When the Xpert boots, it
loads all SLLs that reside in the Flash Disk subdirectory.

3.2 Creating Setup Blocks

Setup blocks are represented in code as classes derived from TModule (see module.h). When
creating a setup block using the Xpert SDK, the SDK’s template provides the class specification
and overrides of basic methods consistent with the options selected during project creation in the
files <block name>.h and <block name>.cpp. These files form the foundation for the developer’s
addition of code to perform the processing required for his or her specific application.

To complete the setup block, the developer should review and update (as necessary) the functions
provided by the template, and then provide any additional overrides and functions needed. The
functions and TModule overrides the developer may need to implement or update are described in
the following sections.

3.2.1 Constructor

The setup block constructor is invoked when the setup block is created. It is in the constructor that
the class data and properties should be initialized.

3.2.1.1 Setup Block Properties

Properties are something very specific in an Xpert application. A setup block typically has various
properties associated with it that are edited using the block’s properties dialog. Some examples are
SDI addresses, 1/0 Module numbers and channels, calibration coefficients, etc.

A property is realized in code as an instance of the class TProperty. The properties are “added” to
the block’s property list (which is provided by the base class) in the constructor. Once these
properties have been added to the properties list, the properties are saved and restored to and from
the setup file automatically.

When a project is created, the template identifies many default properties. The template contains
properties used to store output data, as well as properties used to store 1/0 module and id and
channel information. The template contains code in the constructor to initialize these properties and
add them to the internal property list.

The developer should declare any additional properties needed in the header file, and then initialize
and add the properties to the property list in the constructor.

The example that follows initializes four properties, adds them to the internal property list, and
initializes the user-defined attribute m_iCount to 0.

CMyBlock: :CMyBlock ()
: TModule(T ("MyBlock"), MyLibSLL.hResource)

{
// Add analog I/0 properties.
AddProperty(T ("AIOChannel"), m propAIOChannel = 0);
AddProperty(T ("AIOModule"), m propAIOModule = 1);

// Add digital I/O properties.
AddProperty(T ("DIOChannel"), m propDIOChannel = 0);
AddProperty(T ("DIOModule"), m propDIOModule = 1);

// Add SDI properties.
AddProperty(T ("SDIAddress"), m propSDIAddress = 0);

// Initialize class member data.
m_iCount = 0;

3.2.2 ShowProperties()

Xpert users are used to seeing and editing properties in a dialog box opened via the Edit Properties
menu item, gained from selecting a block icon on the setup screen. This dialog is invoked modally
within the ShowProperties method. The Xpert application framework calls ShowProperties when it
is time to actually show the dialog.

A skeleton of this dialog box is provided by the template and may be found under the “resources”
tab of the Visual Studio workspace under the resource id IDD_<block name>. The dialog already
contains 12C and/or SDI controls, if such were selected during the project’s creation. The developer
typically populates the dialog with controls for any properties or data values added outside of the
template framework.

The source code for the dialog resides in the files <block name>DIg.h and <block name>DIg.cpp.

The following example shows how the dialog of type CMyBlockDIg is used to update properties.

bool CMyBlock: :ShowProperties (CWnd* pParent)
{
// This method is called whenever the properties dialog of this block
// should be shown. The call to this method typically occurs across module
// boundaries and typically loads resources. Hence, we use TResourceKey
// to ensure resources are loaded from the correct module.
TResourceKey key (MyLibSLL) ;
CMyBlockDlg dlg(pParent);

dlg.m_ iAIOChannel = m propAIOChannel;
dlg.m iAIOModule = m propAIOModule;
dlg.m iDIOChannel = m propDIOChannel;
dlg.m iDIOModule = m propDIOModule;
dlg.m iSDIAddressIdx = m _propSDIAddress;
if (dlg.DoModal () == IDOK)
{
// TODO: Incorporate data from dialog.
Engine.IOModList.ClearChannelInUse (ANALOG, m propAIOModule,
m_propAIOChannel) ;
m_propAIOChannel = dlg.m iAIOChannel;
m propAIOModule = dlg.m iAIOModule;
Engine.IOModList.SetChannelInUse (ANALOG, m propAIOModule,
m_propAIOChannel) ;

Engine.IOModList.ClearChannelInUse (DIGITAL, m propDIOModule,
m_propDIOChannel) ;

m_propDIOChannel = dlg.m iDIOChannel;

m_propDIOModule = dlg.m iDIOModule;

Engine.IOModList.SetChannelInUse (DIGITAL, m propDIOModule,
m_propDIOChannel) ;

m propSDIAddress = dlg.m iSDIAddressIdx;
return true;

}

return false;

3.2.3 Initialize()

Initialize is called by the Xpert application framework for every setup block just after a user presses
the Start button, and just before the Engine begins executing scheduled actions. Generally speaking,
any data or I/0O Module initialization that should occur prior to each start of recording should be
performed by Initialize.

The template contains code to reinitialize the block’s output data to a default state. The Initialize
method is probably a good place to reinitialize any other data added by the developer.

Blocks using Digital I/0 Modules often need to initialize their connected device to prepare for
performing cyclic actions following start, as in the following example:

DigitalIO* pDigIO = Engine.IOModList.GetDigitalIO (m propDIOModule) ;
if (pDigIO)
{
pDigIO->SetAsCounter (m _propDIOChannel) ;
pDigIO->SetSamplingSpeed(0.5); //set to max speed, see 12c device spec
pDigIO->StartRequest () ;
}
else
Report.Error(T("Failed to get digital module.\r\n"));

Blocks that want to listen for 1/0O Module alarms typically need to initialize their connected module
to prepare for generating alarms following start:

DigitalIO* pDigIO = Engine.IOModList.GetDigitalIO (m propDIOModule) ;
if (pDigIO)

pDigIO->AlarmOnSingleEdge (m_propDIOChannel) ;
pDigIO->SetAlarm(m_ propDIOChannel, 1);
pDigIO->ActivateAlarm(m propDIOChannel) ;
pAlarmHandler = new I2CEVENTHANDLER (m propDIOChannel, *this);
pMod->SetEventHandler (*pAlarmHandler) ;
pDigIO->StartRequest () ;

}

else
Report.Error(T("Failed to get digital module.\r\n"));

To create a “scheduled” block (i.e., one that initiates its own processing, as opposed to responding
to the push or pull of other blocks), then add code to register its schedule for execution with the
engine as part of the Initialize method. A schedule is registered by calling Engine’s SetSchedule
method with the appropriate timing parameters. This call tells Engine to invoke this method’s
Execute method according to the schedule provided. See the Engine API for a more detailed
description of SetSchedule.

Engine.SetSchedule (m propOffset.AsCString(), m propInterval.AsCString(),
*this) ;

3.2.4 Execute()

The Execute method is called as part of a push or pull of data through the system initiated by
Engine. When the Execute method is invoked, it is a signal to the block to perform the function the
block was created to perform. Because sensor blocks have an Execute method that is usually very
different from non-sensor and scheduled blocks, they are treated separately in the following.

3.2.4.1 Execute() for Sensor Blocks

The invocation of Execute for a sensor block means that it’s time for the sensor to take its
measurement, perform any necessary calculations, and assign the results to the output property
data.

Since an invocation of Execute does not happen instantly, it buffers output data to stack data and
only assigns data to the output properties once all data has been completely determined. The
assignment to the output properties occurs within a data lock in order to ensure a consistent data
set.

The basic course of events within the Execute method for a sensor block follows:

1. Prior to taking the measurement:

a. Use the passed parameter tScheduled to set the buffered sensor data’s scheduled time value.
b. Initialize the buffered sensor data’s actual time value to the current time.

c. Initialize the buffered sensor data’s quality flag to bad.

d. Initialize the buffered sensor data’s data value to 0.

2. Take the measurement. This largely consists of making calls to either the 12C or SDI API,
depending on the way the sensor hardware communicates with Xpert. Note that these calls
likely configure the sensor prior to reading its measurement.

3. After the measurement, buffer the results within a data lock. The methods LockData() and
UnlockData() are accessible from the TModule base class.

The Execute method of a module taking a simple voltage measurement would be defined as
follows. Note that the template code provides all of the following except the part that actually takes
the measurement.

void CMyBlock: :Execute (TTime tScheduled)

{
// Initialize intermediate Outputl data quality to bad.
CSensorData OutputlData = m OutputlData;
OutputlData.TimeScheduled = tScheduled;
OutputlData.TimeActual = TTime::GetCurrentTime () ;
OutputlData.Quality = CSensorData: :BAD;
OutputlData.Data = 0.0;
CSensorData RawData = LastData;

// Get handle to analog module.
AnalogIO* pAnalogIO = Engine.IOModList.GetAnalogIO (m propAIOModule) ;
if (!pAnalogIO)
{
Report.Error (_T("CMyBlock::Execute: Failed to get module.\r\n"));
return;

}

// Take the measurement.
double Voltage;
I2CCODE code = pAnalogIO->SingleVoltageReading(m propAIOModule,
Voltage) ;
if (code == I2C OK)
{
OutputlData.Data = Voltage;
OutputlData.Quality = CSensorData: :GO0D;
}
else
Report.Error (T("CMyBlock::Execute: Volt reading failed.\r\n"));
// Buffer output data.
LockData() ;
m_OutputlData = OutputlData;
UnlockData();

3.2.4.2 Execute() for Passive, Non-Sensor Blocks

Blocks that are not of type input and not scheduled, typically retrieve data from one or more of the
blocks connected as inputs, process the data, and then assign the results to the output property data.

The following example demonstrates a block taking its two inputs and adding them together to
produce its output.

void CMyBlock: :Execute (TTime tScheduled)

{
// Initialize intermediate Outputl data quality to bad.
CSensorData OutputlData = m OutputlData;
OutputlData.TimeScheduled = tScheduled;
OutputlData.TimeActual = TTime::GetCurrentTime () ;
OutputlData.Quality = CSensorData: :BAD;

10

OutputlData.Data = 0.0;

// Retrieve inputs.
CSensorData sdInputl, sdInput2;
GetInputData (1, sdInputl); // inputl connected to input point 1
GetInputData (3, sdInput2); // input2 connected to input point 3
OutputlData.Data = sdInputl.AsInteger () + sdInput2.AsInteger();
if (sdInputl.Quality == CSensorData::GOOD &&
sdInput2.Quality == CSensorData::GOO0D &&
OutputlData.Data.AsInteger () > 0)
OutputlData.Quality = CSensorData: :G0O0D;

// Buffer the output data.
LockData() ;
m_OutputlData = OutputlData;
UnlockData () ;

}

Note how this example tests the quality of the inputs and the range of the result to determine if the
result is valid. In general, if something goes wrong in the calculation, or if the inputs or result do
not meet expectations, the quality should be set to bad, as it is initially in this example.

Also note the call to GetlnputData() in the example. This function retrieves the data from the
module connected to the specified input. The next paragraph describes how to tell what input to
specify.

3.2.4.2.1 Ildentifying Input and Output Indices

Every block can have up to five inputs and the inputs are enumerated from 0 to 4. When a block
has only one input, its connection point is always at point 2. When a block has two inputs, the top
input is at point 1 and the bottom input is at point 3. When a block has three inputs, the top input is
at point 0, the middle input is at point 2, and the bottom input is at point 4. When a block has four
inputs, the top input is at point O, the first middle input is at point 1, the second middle input is at
point 3, and the bottom input is at point 4. When a block has five inputs, the points run 0 to 4, from
top to bottom.

Indices are assigned to outputs in the same way they are assigned to inputs. Hence, the center
output point is indexed as point 2, and so on.

3.2.4.3 Execute() for Scheduled Blocks

Blocks that are scheduled are “pulled” by the Engine by default when it is time to run. This means
that whenever any other block pulls the scheduled block (as would be the case when another
scheduled, or in some way active, block performed a pull), the scheduled block would behave as if
it were it running on schedule. This may or may not be the desired behavior. Determining as much
depends on the unique requirements of the block being developed.

Typically, the desire is to have scheduled blocks ignore pushes and pulls from other blocks, and to
only execute when it is told to do so by the engine on schedule. Achieving this behavior is simple,
but requires an understanding of how blocks are told to execute by the engine on schedule. The
following diagram helps to illustrate how this occurs. Note: in the diagram, an asterisk indicates a
lock request (i.e., could result in a block), a subscripted “v” indicates the function is virtual, and a
dashed line indicates a change in TModule context (a call to a different block).

11

<Engine> " ExecuteScheduledAction™ > Pull

! s

Pull —* PullData, —* Pulllnputs =

* Execute,

Push — PushData, * Exccute,

T —* PushOutputs =]

<I’C Alarm> * EventExec, sy 2

Figure 4: Scheduled Pulls and Event-Driven Pushes

From the diagram it is apparent that, to stop responding to pulls and pushes by other modules, the
virtual functions PullData and PushData can be overridden to do nothing but return. But this has the
unwanted side-effect of also ignoring the engine’s pull of the block on schedule. To restore this
functionality, ExecuteScheduledAction can be overridden to call Pulllnputs, Execute, and
PushOutputs successively, which must occur within a lock of PullLock, as in the following
example:

void CMyBlock: :ExecuteScheduledAction (TTime tScheduled)
{
TSingleLock Singlelock (PullLock) ;
if (SinglelLock.Lock (INFINITE))
{
PullInputs (tScheduled, false);
Execute (tScheduled) ;
PushOutputs (tScheduled) ;

12

An alternate form of PushOutputs() is available which will push only a single output point instead
of the default of pushing all of them. For instance to push only the blocks connected up to the
middle output (#2), PushOutputs(tScheduled, 2) can be called. For instance, one output point might
typically be connected to a binary output block while another may be connected to a log block. It
may be undesirable to force data to be logged everytime the binary output needs to be changed.

Also apparent from the diagram is that I2C alarms don’t actually translate to event-driven pushes as
a matter of course. Typically, EventExec is overridden to call PushOutputs when the alarm
information passed-in meets the correct criteria.

3.2.5 Stop()

The Stop method is called by the Xpert application framework when the user has pressed the Stop
recording button. If the sensor uses a Digital /0 Module and has made a previous start request,
then the Stop method should be overridden to request stop, as in the following example:

void CMyBlock: :Stop ()
{
DigitalIO* pDigIO = Engine.IOModList.GetDigitalIO (m propDIOModule) ;
if (pDigIO)
pDigIO->StopRequest () ;
else
Report.Error(T ("CMyBlock::Stop: Failed to get module.\r\n"));

3.2.6 AfterReadSetup()
AfterReadSetup is called by the framework after a setup file is read in.

void CMyBlock: :AfterReadSetup (int BaselIndex)
{

// Place any code that should be run when a new setup is read-in here
TModule: :AfterReadSetup (BaseIndex) ;

3.2.7 SetChannelslnuse()

SetChannelsinuse() is called by the framework after a setup file is read in, or whenever a change to
the channel or module property is made. When using 12C 1/O devices, override this method to
claim channel usage.

void CMyBlock::SetChannelsInuse ()

{
Engine.IOModList.SetChannelInUse (DIGITAL, m propDIOModule,
m_propDIOChannel) ;

3.2.8 ClearChannelsinuse()

ClearChannelsinuse() is called before the channel or module properties of a block are changed.
When using 12C 1/O devices, override this method to release channel usage.

void CMyBlock::ClearChannelsInuse ()

{
Engine.IOModList.ClearChannelInUse (DIGITAL, m propDIOModule,

13

m_propDIOChannel) ;

3.2.9 GetModuleType()

GetModuleType() is called by the framework to determine the type of the setup block, which can
be one of the following as defined by TModule::ModuleType: INPUT, OUTPUT, PROCESSING,
CALCULATION, LOGGING, TELEMETRY, or OTHER.

void CMyBlock: :GetModuleType ()

{
return TModule: :INPUT;

}

3.2.10 GetDeviceType()

GetDeviceType() is called by the framework to determine the type of input/sensor block, which can
be one of the following as defined by the global enum ClODeviceType: UNKNOWN_DEVICE,
ANALOG, DIGITAL, DISPLAY, SDI12, RS232, RS485.

Note: When developing a block that uses an analog or digital device, but not both, then it is
possible to simplify the code by deriving your block (TModule) from either TAnalogModule or
TDigitalModule. These classes provide default implementations of several methods to reduce the
amount of code that needs to be written. The methods provided are: GetDeviceType(),
ClearChannelsinuse(), SetChannelsinuse(), GetlOAddrAsString(), AssignDefaultChannel(),
GetModuleProperty(), and GetChannelProperty().

void CIODeviceType: :GetDeviceType ()

{
return ANALOG;

}

3.2.11 GetModuleProperty()
This method returns a handle to the property that identifies the 1/0 module used by the block. The
When I12C 1/0 modules are used, override this method to return the indicated property.

This method supports the use of the block in the context of EZSetup Measurements.

TProperty* CMyBlock: :GetModuleProperty ()

{
return &m propAIOModule;

}

3.2.12 GetChannelProperty()

This method returns a handle to the property that identifies the device channel, com port, or SDI
address used by the block. When 12C I/0 modules are used, override this method to return the
indicated property.

This method supports the use of the block in the context of EZSetup Measurements.

14

TProperty* CMyBlock::GetChannelProperty ()
{

return &m propAIOChannel;
}

3.2.13 AssignDefaultChannel()

This is called by the framework when a new input block is created to find and set default channel
and module properties of the block. Typically Engine.IOModL.ist.FindChannel() is called to find an
unused 12C channel, but this is handled automatically if the block is derived from TAnalogModule
or TDigitalModule and only requires a single channel.

void CMyBlock: :AssignDefaultChannel ()
{
Engine.IOModList.FindChannel (ANALOG, IOModule.AsInteger (),
IOChannel.AsInteger());
Engine.IOModList.FindChannel (ANALOG, IOModule.AsInteger(),
IOExcitationChannel.AsInteger());

3.2.14 EventExec()

EventExec() is called by the Engine when a block has indicated it responds to I/O module alarms
(i.e., it has created an instance of I2CEVENTHANDLER; see Initialize above) and an alarm has
occurred. Override this method to perform processing when a registered alarm occurs. For example,
to have the block output its data to all blocks connected to its outputs, the override might look as
follows:

void CMyBlock: :EventExec (BYTE EventType, UINT32 Time)
{

PushOutputs (TTime: :GetCurrentTime ()) ;
}

3.2.15 GetIlndexOfDataToCalibrate()

Override this method to change which output value is used for calibration.
The result of GetDefaultOutput () is used by default.

int CMyBlock::GetIndexOfDataToCalibrate ()
{

return 0; // Calibrate based on the first output
}

3.2.16 SupportsGUICalibrate()

Overide this method and return true if you wish to allow GUI calibration. The default behavior is to
allow GUI calibration if the module supports an Offset or a CalOffset property. See GUICalibrate()
for more details.

bool CMyBlock: :SupportsGUICalibrate ()
{

15

return true;

3.2.17 GUICalibrate()

This method is invoked by the framework when the user presses the “Cal...” button on the Sensors
page. By default, a message is displayed indicating no calibration is necessary. Override
SupportsGUICalibrate() such that it returns true, and this method to guide the user through the
calibration procedure. For example:

bool CMyBlock:GUICalibrate ()
{
CSensorData sdLastData, sdNewData;
GetData (GetIndexOfDataToCalibrate (), sdLastData);
if (sdLastData.IsGood())
{
sdNewData = sdLastData;
if (IDOK == ChangeNumberDlgReal (NULL, sdNewData.Data.AsDouble (),
_T("Enter current value")))
if (Calibrate (sdLastData, sdNewData))
return true;

}
else
AfxMessageBox (T ("Quality of current value is not good. ")
_T("Please measure first."));

return false;

3.2.18 Supportsl2CCalibrate()

Overide this method and return true if you wish to allow calibration via the 12C Display. The
default behavior is to call SupportsGUICalibrate(). See 12CCalibrate() for more details.

bool CMyBlock: :SupportsI2CCalibrate()
{

return true;

}

3.2.19 I2CCalibrate()

This method is invoked by the framework when a user selects calibrate from a connected 12C
display. By default, setup blocks do not support this type of calibration. To provide support,
override this method to perform the calibration and override TModule::Supportsi2CCalibration() to
return true, indicating the setup block supports calibration via the 12C display. For example:

bool CMyBlock::I2CCalibrate ()

{
CSensorData sdLastData, sdNewData;
GetData (GetIndexOfDataToCalibrate (), sdLastData);
DisplayIO* pDisp = Engine.IOModList.GetDisplayIO(1l);
if (pDisp)

16

if (sdLastData.IsGood())

{
DisplayIO::EditStatus status;
sdNewData = sdLastData;

status = pDisp->EditFloat (sdNewData.Data.AsDouble(), T ("Cur.val"));

if (status == DisplayIO::EDIT OK)
if (Calibrate (sdLastData, sdNewData))
return true;
}
else
{
pDisp->Write(T ("Cur val is bad"));

pDisp->Write(T ("Measure val first"), 1);
Sleep (3000) ;
}
}

return false;

3.2.20 Calibrate()

Override this method to determine how calibration is performed. By default if a CalOffset property
exists then this is updated to reflect the difference between the old and desired value, otherwise the

Offset property is adjusted. If neither exists false is returned.

bool CMyBlock::Calibrate (CSensorData& sdOld, CSensorData& sdNew)
{
CalOffset = sdNew.Data.AsDouble() - sdOld.Data.AsDouble ()
+ CalOffset->AsDouble () ;
LastData = sdNew;
return true;

3.2.21 GetSchedulelnfo()

This method is invoked by the framework for scheduled blocks to retrieve a string describing the

block’s schedule. This string is displayed in the control panel under Graphical Setup for each of the

input blocks shown there.

CString CMyBlock: GetScheduleInfo ()
{
CString str;
TTime timeNext = TTime (0);
if (Engine.IsRunning())
{
TTimeSpan tsTime = StrToTimeSpan (Time) ;
TTimeSpan tsInterval = StrToTimeSpan (Interval);
timeNext = NextScheduledTime (TTime: :GetCurrentTime (),
tsInterval, tsTime);

}

str.Format(T("%s (Next: %02d:%02d:%02d)"), Interval.AsLPCTSTR(),

timeNext.GetHour (), timeNext.GetMinute (), timeNext.GetSecond())

return str;

17

3.2.22 Setup Block Icon

This icon is stored in a bitmap file in the “/res” project subdirectory. The icon may be replaced with
a custom bitmap simply by replacing or editing the bitmap file. The Visual Studio development tool
provides bitmap editing tools.

3.2.23 Adding Multiple Blocks to a Single Library

1.

In <library name>.cpp, modify TFactory::TFactory constructor to initialize its module list with
all required blocks. This typically invloves updating the definitions for both Modules and
ModuleCount. For example:

TFactory::TFactory ()

{
static TCHAR* Modules[]={ T ("MyFirstBlock"), T ("MySecondBlock")};
ModuleCount = 2;
ModuleList = Modules;

}

In <library name>.cpp, modify TFactory::CreateModule() to create multiple blocks, based on
the index received (which ranges from 0 to ModuleCount-1). For example:

TModule* TFactory::CreateModule (int Index)

{
switch (Index)

{
case 0: return dynamic_ cast<TModule *>(new CMyFirstBlock());
case 1l: return dynamic cast<TModule *>(new CMySecondBlock())
default: return NULL;

}

Create a bitmap to serve as an icon for the new setup block. Start with a copy of the bitmap
included in the template since it already has the correct color depth and size attributes. Add this
new bitmap to the project in Visual Studio.

Use the source and header files of the setup block template as a starting point for new source
and header files for the new setup block. Add these files to the project. Repeat this step for the
files to be used for the new block’s properties dialog.

Create the dialog resource for the properties dialog. Update the resource identifier referenced in
the properties dialog header file with the new resource identifier.

3.2.24 Adding Inputs and/or Outputs

Adding new inputs or outputs to a block can be done by updating the methods of the block class
that define the number of inputs (outputs) exist, whether the inputs (outputs) are active, and the
corresponding names. When the number of output points changes, it is usually necessary to update
the output point buffering scheme.

3.2.24.1 Update Input/Output Methods

The number of inputs is defined by the method InputCount(). The number of outputs is defined by
the method OutputCount().

18

The method InputActive() is used to define whether a given input is active (i.e., connectable). The
corresponding method for outputs is OutputActive(). These methods should return true for any
connection point that is active. For example, if input point 2 (the center input®) is connectable, then
InputActive(2) should return true. These methods should return false for any connection point that
IS not active.

The method InputName() is used to define the name, or label, of a given input. The corresponding
method for outputs is OutputName(). These methods should return a CString object containing the
name of the input (or output).

3.2.24.2 Update Output Buffering Scheme

When the number of outputs changes, it is usually necessary to update the output point buffering
scheme, which consists of buffer variables and accessor methods.

Whenever a block asks for data from another block using GetlnputData(), the data that is returned
comes from the provider block’s internal buffer associated with the output. In the simplest case of
one output, the variable LastData, provided by the TModule base class, is used to buffer the output
for point 2. The templates code automatically manages this buffering.

When a block has more than one output, separate buffers must be added as class variables for each
output. When the values for the outputs are determined (typically during Execute()) they must be
assigned to the buffered output variables inside a data lock. The accessor methods GetData() and
SetData() serve as the public interface to this data.

3.3 Creating Property Pages

The property page template provides an empty property page in the files <page name>.h and <page
name>.cpp. The page is encapsulated within a class named C<page name> derived from
CModPropPage. The developer uses standard Windows’ dialog controls to present and obtain data
to and from the user.

3.3.1 Adding Multiple Pages to a Single Library

1. In <library name>.cpp, modify TFactory::TFactory constructor to initialize its page list with all
required pages. This typically invloves updating the definitions for both Pages and PageCount.
For example:

TFactory::TFactory ()

{
static TCHAR* Pages[]={ T ("MyFirstPage"), _T("MySecondPage")};
PageCount = 2;
Pagelist = Pages;

}

2. In <library name>.cpp, modify TFactory::CreatePage() to create multiple pages, based on the
index received (which ranges from 0 to PageCount-1). For example:

3 For a detailed discussion of how to identify the index of an input or output point, see “3.2.4.2.1 Identifying Input and
Output Indices”.

19

TModule* TFactory::CreatePage (int Index)
{

switch (Index)

{
case 0: return dynamic cast<CModPropPage*>(new CMyFirstPage())
case 1l: return dynamic_cast<CModPropPage*>(new CMySecondPage());
default: return NULL;

}

3. Use the template property page source and header files as a starting point for new source and
header files for the new property page. Add these files to the project.

4. Create the dialog resource for the property page. Update the resource identifier referenced in
the property page header file with the new resource identifier.

3.4 Creating Control Panel Entries

The SDK template provides an empty control panel entry in the files <entry name>.h and <entry
name>.cpp. The entry is encapsulated within a class named C<entry name> derived from
CControlPanelEntry. The developer accesses this entry using standard Windows’ tree control
routines to present data to the user.

3.4.1 Control Panel Buttons

When a node of a tree is selected, the Editltem method is called which in turn instantiates and
invokes modally a dialog intended to allow the user to edit the selected item. This dialog template
is encapsulated in a class named C<entry name>Dlg, and appears in the files <entry name>DlIg.h
and <entry name>DIg.cpp. The developer uses standard Windows’ dialog controls to present and
obtain data to and from the user to edit the selected item.

The control panel also supports two other buttons (labeled New and Delete by default). They may
be activated and named by overriding GetButtonLabels() and implemented by overriding
Newltem() and Deleteltem() methods.

3.4.2 Making and Saving Changes to Setup Data

The control panel is where the user makes changes to data that is typically related to system setup.
It often the case that these changes must occur with recording stopped. Also, it is often the case that
these changes need to be saved upon leaving the control panel. The base class of the control panel
entry (CControlPanelEntry) provided by the template provides support for these special situations.

When the system is recording, it is using system setup data. If changes are to be made to this data,
system recording must be stopped first. This is typically done by calling PromptStopEngine()
before the changes are made. This method of CControlPanelEntry prompts the user for permission
to stop recording. If the user agrees, recording is stopped by calling Engine.Stop() and then a flag is
set (m_bRecStopped) to true so that the system prompts to turn recording back on once the user
leaves the control panel.

When changes are made to system setup data, it is the system’s convention to save these changes
automatically when the user tabs away from the setup tab/control panel page. To ensure this is
done, set m_bSaveNeeded to true after the changes are made. This causes the system to save the

20

system setup automatically when the user leaves the control panel (just before prompting to turn
recording back on, if it was turned off).

3.5 Creating “Empty” SLLs

It is possible to create an SLL that does not contain a setup block, property page, nor control panel
entry. Such an SLL could be programmed to perform countless functions given the developer has
access to the complete Windows CE API, in addition to the Xpert API. To create an empty SLL,
simply start with the template code but exclude templates for setup block, property page, and
control panel entry.

3.6 Signaling an SLL on Application Init/Exit

It is possible to have Xpert “signal” an SLL at both application initialization and termination by
defining and exporting the functions “extern "C" _declspec(dllexport) void Applnit()” and “extern
"C" declspec(dllexport) void AppExit()”, respectively. When the Xpert application starts, it
searches for the Applnit function in all loaded SLLs and calls them if found. At application
termination (when the user presses “Exit App” on the status page), Xpert searches each SLL for the
function AppEXxit, and executes it if found.

The call to Applnit() is the ideal point from which to spawn new execution threads, should this be
required. The call to AppExit() is the ideal point from which to signal those threads to exit. An
example of this type of processing is included in the examples section of this document.

4 APIs

The set of functions and data available from Xpert libraries are divided into different groups based
on source and purpose. Note: See the Visuual Studio online help for documentation of the
Windows CE API.

4.1 Engine API

The Xpert Engine consists of both an engine object and a set of exported functions. The engine
object is an instantiation of CEngine named “Engine” that exists following boot. The exported
functions are exported as standard “C” functions.

4.1.1 The Engine Object

This section contains descriptions of the engine object’s public methods and data. Since these
methods and data belong to the instance of CEngine named “Engine”, they are accessed using the
dot qualifier, as in the following examples:

Engine.hStartEvent
Engine.IOMOdList.GetAnalogIO ()
etc..

41.1.1 hStartEvent

This event handle is signaled when the user has pressed the Start recording button. It is reset when
the user presses Stop. UseWaitForSingleObject() and/or WaitForMultipleObjects() to wait/test this

21

event handle. (Note: the engine method “IsRunning()” can also be used to determine if this event
handle is set).

HANDLE hStartEvent
Header
Engine/Engine.h

4.1.1.2 hStopEvent

This event handle is signaled when the user has pressed the Stop recording button. It is reset when
the user presses Start. UseWaitForSingleObject() and/or WaitForMultipleObjects() to wait/test this
event handle. (Note: the engine method “IsRunning()” can also be used to determine if this event
handle is cleared).

HANDLE hStopEvent
Header
Engine/Engine.h

4.1.1.3 ModuleList

This member is an array containing handles to each of the setup blocks defined on the setup page.
Note: both TObArray and TModule are defined in module.h.

TObArray<TModule> ModulelList;
Header
Engine/Engine.h

4.1.1.4 Run()

This method is used to programatically start recording. Note: This method does not validate the
contents of the setup before starting recording.

void Run (bool bShowErrors=true) ;
Parameters

bShowErrors - Determines whether errors encountered when starting recording
should be displayed to user. This value should be set to false
when the user is not expected to be watching the screen during
recording start.

Return Value
None.

Header
Engine/Engine.h

22

4.1.1.5 Stop()

This method is used to programatically stop recording.

void Stop();
Parameters
None.
Return Value
None.
Header
Engine/Engine.h

4.1.1.6 IsRunning()

This method is used to determine whether recording is currently stopped or started.

BOOL IsRunning() ;
Parameters

None.
Return Value

TRUE if recording is On, false otherwise.

Header
Engine/Engine.h

4.1.1.7 SetSchedule()

This method is used to establish the execution schedule of a TModule object. After the scheduling

call is made, the Engine will execute ExecuteScheduledAction() associated with the module

provided. The default action of ExecuteScheduledAction is to pull the module’s inputs and invoke

the module’s Execute method.

BOOL SetSchedule (
CString Offset,
CString Interval,
TModule& module) ;

BOOL SetSchedule (
TTimeSpan Offset,
TTimeSpan Interval,
TModule& module) ;

BOOL SetSchedule (
TTimeSpan Offset,
TTimeSpan Interval,

TTimeSpan StartInterval,

TModule& module) ;

23

Parameters

Offset - Astring or timespan representing the offset into the interval in
which to invoke the module’s ExecuteScheduledAction() routine.
The string should be in the format “HH:MM:SS”.

Interval - A string or timespan representing the interval at which to invoke
the module’s ExecuteScheduledAction() routine. The string
should be in the format “HH:MM:SS”.

StartInterval - A timespan representing the interval at which to invoke the
module’s ExecuteScheduledAction() routine for the first time.
The string should be in the format “HH:MM:SS”. For example, a
starting interval of “00:15:00” will cause
ExecuteScheduledAction() to be invoked on the next 15-minute
interval. Thereafter, the function is invoked according to

Module A reference to the module being scheduled.

Return Value
TRUE is returned.
Header

Engine/Engine.h

4.1.1.8 ForceSchedule()

This method causes the ExecuteScheduledAction() routine associated with the specified module to
execute immediately. The bEvent flag is set to true when passed to ExecuteScheduledAction() to
indicate that the event was forced. This allows a block to have both a regular execution interval as
well as an event driven trigger input. When the trigger event occurs, Engine.ForceSchedule() can
be called to allow the block to process the data immediately.

bool ForceSchedule (const TModule& Module) ;

Parameters

Module - Reference to the module to execute immediately. Note that the
module must be one that has already been scheduled through a
call to SetSchedule.

Return Value

True is returned if module is found and successfully notified to execute immediately.
Header

Engine/Engine.h

24

4.1.1.9 LockGUI()

This method is used to guarantee exclusive access to the user interface. This method blocks on a
semaphore until exclusive access is available. This method is typically used by worker threads that
need to update some element of the GUI (e.g., threads that update control panel entries).

bool LockGUI():;
Parameters

None.
Return Value

Returns false immediately if GUI is disabled (not running). Otherwise, once the lock is
obtained, true is returned.

Header
Engine/Engine.h

4.1.1.10 UnlockGUI()

This method is used to release exclusive access to the user interface after it has been obtained by
calling LockGUI().

void UnlockGUI () ;
Parameters
None.
Return Value
None.
Header
Engine/Engine.h

4.1.1.11 AutoSaveSetup()
This method is used to force a save of the active setup to disk.

bool AutoSaveSetup (DWORD dwWait = 0);
Parameters

dwWait - Access to the setup must be locked before the autosave can
complete successfully. This parameter is the number of
milliseconds to wait for the lock to become available, if it is not
available already. “INFINITE” may be specified to wait
indefinitely.

Return Value
True is returned if the function is successful. False is returned otherwise.
Header

25

Engine/Engine.h

4.1.1.12 LockSetup()

This method is used to lock access to the setup file for either read-only or exclusive write access.

Read-only access is granted to any thread that requests it as long as no write access is active.

Hence, multiple threads can obtain read access concurrently. Write access is exclusive, causing all
other requests, whether read-only or write, to block. The dwWait parameter determines how long a
thread desires to wait for the requested access. If the lock is successful, true is returned. If the lock

attempt times-out, false is returned. The thread must call UnlockSetup() to release the lock,
specifying whether read-only access was originally requested as a parameter.

bool LockSetup (DWORD dwWait = 0, bool bReadOnly = true);
Parameters

dwWait - The number of milliseconds to wait for the lock to become
available, if it is not available already. “INFINITE” may be
specified to wait indefinitely.

bReadOnly - When true, read-only access is requested. When false, exclusive
write-access is requested.

Return Value

True is returned when the lock is successful. False is returned otherwise.
Header

Engine/Engine.h

4.1.1.13 UnlockSetup()

This method is used to unlock access to the setup file.
void UnlockSetup (bool bReadOnly = true);

Parameters

bReadOnly - Specify true when read-only access was requested in the call to
LockSetup(). Otherwise, specify false.

Return Value
None.

Header
Engine/Engine.h

4.1.1.14 StationName
A string containing the name of the station.

CString StationName

Header

26

Engine/Engine.h

4.1.1.15 AlarmMgrList

The AlarmMgrList is an array which contains a list of all the installed alarm managers
(CAlarmMgr objects) in the system. An alarm manager is typically contained in an SLL (for
example Coms.sll) and defines what should occur when an alarm or an alert condition occurs and
all other aspects of alarm and alert handling. Be sure to always use LockTags() before and
UnLockTags() after accessing the AlarmMgrList directly.

TObArray<CAlarmMgr> AlarmMgrList;

4.1.1.16 TagList

The TagList is an array which contains a list of all the communication tags in the system known as
CTag. Tags may be looked up by name, or the list may be traversed from top to bottom. Tags are
used to mark data values in the setup that need to be transmitted via telemetry or displayed to the
user (see the “CTag class” section for more information). Since the TagList is a shared resource,
all access to the list must be surrounded by calls to LockTags() and UnLockTags().

TMapStringToRef<CTag> TagList;

4.1.1.17 LockTags()

Must be called before the TagList is accessed or any Tag in the list is used. This is also used to
protect access to the AlarmMgrList.

void LockTags () ;
Parameters
None
Return Value
None
Header
Engine/Engine.h

4.1.1.18 UnLockTags()

Must be called when code is done accessing the TagList or Tags from the list, or the AlarmMgrList
so that other sections of the code may access the list.

void UnLockTags() ;
Parameters

None
Return Value

None

27

Header
Engine/Engine.h

4.1.1.19 InAlarm()

Returns true if the system is in alarm. An alarm condition is defined as one or more sensors
exceeding their alarm limits.

bool InAlarm();
Parameters

None
Return Value

True if the system is in alarm.
Header

Engine/Engine.h

4.1.1.20 InAlert()

Returns true if the system is in alert. An alert condition is defined as a state caused by a change in
the alarm condition requiring a transmission to occur.

bool InAlert();
Parameters
None
Return Value
None
Header
Engine/Engine.h

4.1.1.21 RaiseAlert()
Puts the system in to an Alert state causing transmissions to occur as appropriate.

void RaiseAlert (int ComPort=0) ;
Parameters

ComPort - May be used to indicate which port should respond to the Alert. A
value of 0 indicates that an Alert should be sent out on all
appropriate ports.

Return Value
None
Header

28

Engine/Engine.h

4.1.1.22 ClearAlert()

Clears an existing Alert State, putting a stop to any Alert transmissions as soon as possible.
void ClearAlert (int ComPort=0) ;

Parameters

ComPort - May be used to indicate which port the alert should be cleared for,
otherwise all alerts on all ports are cleared.

Return Value
None

Header
Engine/Engine.h

4.1.1.23 ChangeAlarm()
May be called by an Alarm block to inform the system that the Alarm status has changed.

void ChangeAlarm(bool Alarming);
Parameters

Alarming - Should be set true if a sensor has gone in to alarm. This saves a
lot of overhead because by definition if any tag is in alarm the
entire system is in alarm, otherwise the system state must be
determined by examing every tag.

Return Value
None

Header
Engine/Engine.h

4.1.1.24 ClearAlarm()

Clears all alarm flags in every tag in the system, hence taking the system out of the alarm state (at
least until the next measurement cycle begins and tags start to return to the alarm state).

void ClearAlarm();
Parameters

None
Return Value

None
Header

29

Engine/Engine.h

4.1.1.25 EnableAlarm()

Enables Alarm/Alert transmissions in the system.

void EnableAlarm();
Parameters

None
Return Value

None
Header

Engine/Engine.h

4.1.1.26 DisableAlarm()

Disable Alarm/Alert transmissions in the system.

void DisableAlarm() ;
Parameters

None
Return Value

None
Header

Engine/Engine.h

4.1.1.27 AlarmsEnabled()
Returns the system alarm enable status.
bool AlarmsEnabled () ;
Parameters
None
Return Value

True if Alarm/Alert transmissions are enabled.

Header
Engine/Engine.h

30

4.1.1.28 GetAlarmStatus()

Returns a string representing the status of all the Alarm Managers in the system. They typically
report back the time of next transmission, and/or the time of previous ones.

CString GetAlarmStatus();
Parameters

None
Return Value

A multi line text message CR/LF delimeted prepared by each of the Alarm Managers in the
system.

Header
Engine/Engine.h

4.1.1.29 IOModList

This member is an array containing handles to each of the connected 1/0 modules (instances of
CIOMod: see iomod.h).

CIOModList IOModList;
Header
Engine/lOMod.h

4.1.1.30 10ModList.GetAnaloglO()

This method is used to retrieve a pointer to the Analog I/O Module indicated by ModuleNumber.

AnalogIO* GetAnalogIO(
int ModuleNumber) ;

Parameters
ModuleNumber - The one-based id of the desired analog module.
Return Value

A pointer to the analog module is returned if the module is found. NULL is returned if the
module is not found.

Header
Engine/IOMod.h

4.1.1.31 IOModList.GetDigital IO()
This method is used to retrieve a pointer to the Digital I/0 Module indicated by ModuleNumber.

DigitalIO* GetDigitalIO(
int ModuleNumber) ;

Parameters

31

ModuleNumber - The one-based id of the desired digital module.
Return Value

A pointer to the digital module is returned if the module is found. NULL is returned if the
module is not found.

Header
Engine/lOMod.h

4.1.1.32 10ModList.GetDisplaylO()
This method is used to retrieve a pointer to the 12C Display Module indicated by ModuleNumber.

DigitalIO* GetDisplayIO(
int ModuleNumber) ;

Parameters
ModuleNumber - The one-based id of the desired 12C display module.
Return Value

A pointer to the display module is returned if the module is found. NULL is returned if the
module is not found.

Header
Engine/IOMod.h

4.1.1.33 I0ModList.GetlOMod()
This method is used to retrieve a pointer to the I/0O Module indicated by Type and ModuleNumber.
CIOMod* GetIOMod (

CIODeviceType Type,
int ModuleNumber) ;

Parameters
Type - Possible values are defined by the enum CIODeviceType:
ANALOG, DIGITAL, or DISPLAY.
ModuleNumber - The one-based id of the desired module.

Return Value

A pointer to the 10 module is returned if the module is found. NULL is returned if the module
is not found.

Header
Engine/IOMod.h

4.1.2 Exported Engine Functions
This section contains descriptions of the functions exported from the Engine library.

32

4.1.2.1 ChangeNumberDlglint()
This function invokes a dialog used to obtain an integer from the user.
int ChangeNumberDlgInt (

CWnd* pParent,
int& nInput);

Parameters
pParent - Specifies the parent window.
ninput - Reference to the number to change.

Return Value

IDOK is returned if the user selected OK. IDCANCEL is returned if the user selected Cancel.

Header
Engine/Module.h

4.1.2.2 ChangeNumberDlIgReal()
This function invokes a dialog used to obtain an real number from the user.
int ChangeNumberDlgReal (

CWnd* pParent,
realtype& rInput);

Parameters
pParent - Specifies the parent window.
rinput - Reference to the number to change.

Return Value

IDOK is returned if the user selected OK. IDCANCEL is returned if the user selected Cancel.

Header
Engine/Module.h

4.1.2.3 FileNameDlg()
This function invokes a dialog used to obtain a file selection from the user.

int FileNameDlg (
CWnd* pParentWnd,
CString& sReturn,
LPCTSTR lpszDir = T("\\"),
LPCTSTR lpszFilters = T("*.*"),
LPCTSTR lpszDefaultExt = T(""),
LPCTSTR lpszDefaultName = NULL) ;

Parameters

pParentWnd - Specifies the parent window.
sReturn - The name of the file selected by the user.
IpszDir - The initial directory.

33

IpszFilters - Afile specification used to filter the list of files available for the
user’s selection.

IpszDefaultExt - An extension to apply to the user’s selection if the selection does
not already have an extension.

Return Value

IDOK is returned if the user selected OK. IDCANCEL is returned if the user selected Cancel.
Header

Engine/Module.h

4.1.2.4 KeypadDlIg()
This function invokes a dialog used to obtain a string from the user.

int KeypadDlg(
CWnd* pParent,
CStringé& text,
CString Caption,

CString strType = T(“"));
Parameters
pParent - Specifies the parent window.
text - The string entered by the user.
Caption - String to display in the dialog title.
strType - A string describing the type of entry to be retrieved from user.

Enter one of two strings: “PASSWORD” —characters typed by
user appear as an asterisk (“*”) in dialog; or “FILENAME” — the
characters of the text entered are validated as filename candidates
when “Ok” is pressed.

Return Value
IDOK is returned if the user selected OK. IDCANCEL is returned if the user selected Cancel.

Header
Engine/Module.h

4.1.25 MessageDlg()

This function invokes a dialog to display a message to the user. The function accepts a time
argument that determines how long the dialog will wait for user input before choosing a default
response automatically.

int MessageDlg (
CWnd* pParent,
const LPCTSTR tstrMsg,
UINT nWaitSec = 0,
UINT nType = MB OK,
UINT nDefaultResponse = NULL) ;

34

Parameters

pParent - Specifies the parent window.

tstrMsg - The message to be displayed.

nWaitSec - The number of seconds to wait for user input before choosing the
default response. A value of 0 indicates wait indefinitely.

nType - The type of message box to display to the user.

MB_OK — Dialog has “OK” button.
MB_OKCANCEL - Dialog has “OK” and “Cancel” buttons.
MB_YESNO — Dialog has “Yes” and “No” buttons.
MB_YESNOCANCEL — Dialog has “Yes”, “No”, and “Cancel”
buttons.

nDefaultResponse - The response to choose automatically when the user does not
respond to the dialog within the time specified. Typically IDOK,
IDCANCEL, IDYES, or IDNO, to correspond with the dialog
type.

If this argument is NULL, then the default response is selected
based on the type of the dialog:

MB_OK — Response is IDOK.

MB_OKCANCEL — Response is IDCANCEL.

MB_YESNO - Response is IDNO.

MB_YESNOCANCEL — Response is IDCANCEL.

Return Value

The value of the response either selected by the user or chosen automatically.
Header

Engine/Module.h

4.1.2.6 PasswordDlg()

This function invokes a dialog used to obtain a password from the user. An asterisk character (*) is
displayed for each character the user types.

int PasswordDlg (
CWnd* pParent,
CStringé& text);

Parameters
pParent - Specifies the parent window.
text - The password entered by the user.

Return Value

IDOK is returned if the user selected OK. IDCANCEL is returned if the user selected Cancel.
Header

Engine/Module.h

35

4.1.2.7 SetDateTimeDlIg()

This function invokes a dialog used to prompt the user for time. The time entered by the user is
returned in a SYSTEMTIME structure.

int SetDateTimeDlg (
CWnd* pParentWnd,
TTime& time,
SYSTEMTIME& SystemTime) ;

Parameters
pParentWnd - Specifies the parent window.
time - An initial time to display in the dialog.
SystemTime - The SYSTEMTIME structure containing the time entered by the

user.
Return Value

IDOK is returned if the user selected OK. IDCANCEL is returned if the user selected Cancel.

Header
Engine/Module.h

4.1.2.8 SetTimeDlg()
This function invokes a dialog used to obtain a string representation of time from the user.

int SetTimeDlg(
CStringé& text,
CWnd* pParentWnd,
CStringé& title,
bool bMSec = false,
bool b23HrLimit = false);

Parameters

text - The time entered by the user.

pParentWnd - Specifies the parent window.

title - Asstring to display as the title of the dialog box displayed to the
user.

bMSec - If true, milliseconds are shown on the dialog for the user to enter.

b23HrLimit - If true, the user is not allowed to enter times greater than 24
hours.

Return Value

IDOK is returned if the user selected OK. IDCANCEL is returned if the user selected Cancel.

Header
Engine/Module.h

36

4.1.3 CTagClass

Tags are used to mark data values in the setup that need to be transmitted via telemetry or displayed
to the user. The CTag class is an abstract class. An SLL such as the Coms SLL typically creates
and defines a CTag object for each item it wishes to make available and overrides the appropriate
virtual methods to define the functionality. CEngine:: TagList contains the list of all tags in the
system.

Be careful when naming tags, as tag names must be unique.

4.1.3.1 CTag()
Constructs a tag.

CTag () ;
or

CTag (Cstring NewName) ;
Parameters

NewName - Defines the initial name for the tag. If a name is specified the tag
is automatically added to the TagList.

Return Value
None

Header
Engine/Engine.h

4.1.3.2 ~CTag()
Destroys a CTag, removing it from the TagList if it had been previously added.
~CTag () ;
Parameters
None
Return Value
None
Header
Engine/Engine.h

4.1.3.3 SetName()

Changes the name of the tag. Often tag names are user-defined and can be changed on the fly.
Calling SetName() whenever this occurs will remove the old entry in the TagList, and create a new
entry with the new name.

37

Tag names must be unique withing the system. Call CTag::CheckName to determine if a given
name is unique.

void SetName (CString NewName) ;
Parameters

NewName - Defines the new name for the tag. If NewName is not empty, then
the tag is added to the TagList under the name.

Return Value
None

Header
Engine/Engine.h

4.1.3.4 CheckName()

Checks to see if the specified name is unique relative to the taglist. If the name is not in the tag list,
or if the name is in the taglist for the current CTag, then true is returned.

This method should be called to determine if a potential tag name is unique before the tag is added
to the taglist by SetName().

bool CheckName (CString strName) ;
Parameters
strName - The name to check against the tag list.
Return Value
True if the name is not in the tag list, or if the name is in the taglist for the current CTag.
Header
Engine/Engine.h

4.1.3.5 GetNumValues()

A tag can contain one or more values. This returns how many the tag will support. Under SSP a tag
is expected to have at least two values, where value 0 contains the primary data reading, and value
1 contains the alarm status. In the Xpert the Coms SLL supports value 2 which returns the same
data as value 0, but performs a live reading first by performing an EvalTag().

virtual int GetNumValues () = 0;
Parameters

None
Return Value

The number of defined values, usually 2.
Header

38

Engine/Engine.h

4.1.3.6 GetAlarm()
Returns the alarm status for the tag directly. The status is also typically available by using GetTag()
for value 1. CSensorData:: TAlarmStatus contains the definitions of the various possible alarm bits.
The bits used by the Xpert include: HiLimitA, LowLimitA, DigitalA. These are the “alarm” bits
and indicate that one or more of the three possible alarm condition exists. The HiLimitC,
LowLimitC, and DigitalC bits are called the change bits and indicate that the respective alarm bit
has changed state resulting in an alert condition. The “Digital” alarm bit is currently used in the
Xpert for indicating Rate of Change alarms, while the other two are used for indicating a high or
low limit have been exceeded.

virtual int GetAlarm() = 0;
Parameters

None
Return Value

An integer representing a bit mask defined by CSensorData:: TAlarmStatus.
Header

Engine/Engine.h

4.1.3.7 SetAlarm()

The opposite of GetAlarm, SetAlarm can be used to force the alarm state to the specified value. See
the discussion of GetAlarm() for information about the possible alarm states.

virtual void SetAlarm(int AlarmState) = 0;
Parameters
AlarmState - An integer representing a bit mask defined by

CSensorData:: TAlarmStatus.
Return Value
None
Header
Engine/Engine.h

4.1.3.8 GetTag()

GetTag is used to read values from a tag. This is called in response to an SSP Get Tag message, or
when the user views tag in the View Data screen.

virtual bool GetTag(int ValueNumber, inté& DataType, TValueé& Data,
CSensorData::QualityType Quality) = 0;

Parameters

39

ValueNumber

DataType

Data

Quality

Return Value

- Since a tag can support multiple values, this specifies which one

to retrieve. Typically either 0 or 1, but can be more.
Returns the SSP data type of the value as defined in TDataType
in ssp.h. Here are the supported data types:

dt_long 32-bit integers

dt_real double precision floating point
dt_alarm alarm status information
dt_longstr null terminated strings

dt_char a single character

dt_boolean a1 byte boolean 0/1 value

dt_cardinal a 16-bit unsigned int

dt_integer a 16-bit signed int

dt_nil a null value

The actual data value, TValue can only represent 32-bit integers,
doubles, and strings, so other data types (if used) must be derived
from these types.

Quality of the data, can be CSensorData::GOOD,
CSensorData::BAD, or CSensorData::Undefined.

Returns false if the ValueNumber wasn’t defined.

Header
Engine/Engine.h

4.1.3.9 SetTag()

Sets a tag value to the specified data. This is called in response to an SSP Set Tag message, or when
the user tries to change a tag in the View Data screen.

virtual bool SetTag(int ValueNumber, int DataType, TValueé& Data,
CSensorData::QualityType Quality) = 0;

Parameters
ValueNumber

DataType

Data

Quality

Return Value

Since a tag can support multiple values, this specifies which one
to set. Typically either 0 or 1, but can be more.

The SSP data type of the value as defined in TDataType in ssp.h.
See the discussion under GetTag() for more information.

The string, integer, or double precision value to set the specified
tag value to.

Quality of the data, can be CSensorData::GOOD,
CSensorData::BAD, or CSensorData::Undefined.

Returns false if the ValueNumber wasn’t defined.

Header

40

Engine/Engine.h

4.1.3.10 StartTag()

StartTag is called whenever an SSP Start Tag is received for the specifed tag. For data only tags it
doesn’t usually serve a purpose, but for a tag which implemented a control loop, it would typically
initialize and begin execution of the thread which performs the control loop activity.

virtual bool StartTag() = 0;
Parameters

None.
Return Value

Returns false if the operation failed.
Header

Engine/Engine.h

4.1.3.11 StopTag()

StopTag is called whenever an SSP Stop Tag is received for the specified tag. For data only tags it
doesn’t usually serve a purpose, but for a tag which implemented a control loop, it would typically
safely terminate execution of the thread which performs the control loop activity.

virtual bool StopTag() = 0;
Parameters

None
Return Value

Returns false if the operation failed.
Header

Engine/Engine.h

4.1.3.12 EvalTag()

EvalTag is called whenever an SSP Eval Tag message is received for the specified tag. The purpose
is to evaluate the tag, which might mean take a reading, or execute a control function.

virtual bool EvalTag() = 0;
Parameters

None
Return Value

Returns false if the operation failed.
Header

41

Engine/Engine.h

4.1.3.13 IsCurDataTag()

A flag indicating whether a tag should be included in SSP Current Data and Alarm messages. Even
if this method returns false, the tag is still accessable via other telemetry methods such as the SSP
GetTag or SendTag messages.

virtual bool IsCurDataTag() = 0;
Parameters

None
Return Value

True if the tag should be included in SSP Current Data and Alarm messages.
Header

Engine/Engine.h

4.1.3.14 1sViewableTag()
A flag indicating whether a tag should be displayed in the View Sensor display.

virtual bool IsViewableTag() = 0;
Parameters
None
Return Value
True if the tag should be included in View Sensor screen.
Header
Engine/Engine.h

414 CAlarmMgr Class

An Alarm Manager is a class which manages alarms and alerts for a telemetry SLL. The Engine
maintains a list of all Alarm Managers in the system in CEngine::AlarmMgrList and uses this list to
notify all the managers when an alarm or alert occurs. The alarm or alert may be generated either
by the standard Xpert Alarm block, or by a custom routine that has hooked into the engine’s alert
and alarm interface (see Engine.RaiseAlert() and Engine.ChangeAlarm()).

4.1.4.1 CAlarmMgr ()
The constructor for the class automatically adds the instance to the Engine’s Alarm Manager List.

CAlarmMgr () ;
Parameters
None

42

Return Value
None

Header
Engine/Engine.h

4.1.4.2 ~ CAlarmMgr()

The destructor for the class automatically removes the instance from the Engine’s Alarm Manager
List..

~CAlarmMgr () ;
Parameters
None
Return Value
None
Header
Engine/Engine.h

4.1.4.3 OnRaiseAlert()
This is a call back method which is called whenever CEngine::RaiseAlert() is called.

virtual void OnRaiseAlert (int ComPort);
Parameters

ComPort - The ComPort the alert should be sent out on, or 0 indicating all
ports. This is the same parameter that was passed to
CEngine::RaiseAlert().

Return Value
None

Header
Engine/Engine.h

4.1.4.4 OnClearAlert()
This is a call back method which is called whenever CEngine::ClearAlert() is called.

virtual void OnClearAlert (int ComPort);
Parameters

ComPort - The ComPort the alert should be cleared on, or 0 indicating all
ports. This is the same parameter that was passed to
CEngine::ClearAlert(). Clearing the Alert condition occurs when

43

an Alert (or Alarm) message is acknowledged. Clearing it should
prevent further Alert messages from ocurring until a new Alert is
raised.

Return Value
None

Header
Engine/Engine.h

4.1.45 OnChangeAlarm()
This is a call back method which is called whenever CEngine::ChangeAlarm() is called.

virtual void OnChangeAlarm() ;
Parameters

None
Return Value

None
Header

Engine/Engine.h

4.1.4.6 OnEnableAlarm()
This is a call back method which is called whenever CEngine::EnableAlarm() is called.

virtual void OnEnableAlarm() ;
Parameters

None
Return Value

None
Header

Engine/Engine.h

4.1.4.7 OnDisableAlarm()
This is a call back method which is called whenever CEngine::DisableAlarm() is called.

virtual void OnDisableAlarm() ;
Parameters

None
Return Value

44

None
Header
Engine/Engine.h

4.1.4.8 GetStatus()

This is a call back method which is called whenever CEngine::GetAlarmStatus() is called.
virtual CString GetStatus();

Parameters
None

Return Value

A CR/LF delimited string representing the current state of the alarm manager and any status
information that may be helpful to the user.

Header
Engine/Engine.h

4.1.4.9 OnEngineRun()
This is a call back method which is called whenever CEngine::Run() is called.

virtual void OnEngineRun () ;
Parameters

None
Return Value

None
Header

Engine/Engine.h

4.1.4.10 OnEngineStop()
This is a call back method which is called whenever CEngine::Stop() is called.

virtual void OnEngineStop () ;
Parameters

None
Return Value

None
Header

Engine/Engine.h

45

4.2 1/0 Module API

The 1/0 Module API provided by the Xpert application framework is used to communicate with the
1/0 Modules connected to the Xpert via an 12C bus. The API consists of five different classes:
IODevice, AnaloglO, DigitallO, DisplaylO, and CIOMod. The 10Device is the parent of the
AnaloglO and DigitallO classes, and so contains methods and data that are common to each. The
AnaloglO, DigitallO, and DisplaylO classes represent Analog 1/0O Modules, Digital 1/0 Modules,
and 12C Display Modules, respectively. CIOMod “wraps” the AnaloglO, DigitallO, and DisplaylO
classes into a more generic class and introduces the concept of an event handler.

The developer typically accesses I/0O Modules using a pointer of type AnaloglO or DigitallO. The
template code contains these pointers in places where module manipulation typically occurs (e.g.,

at the beginning of the TModule::Execute method). Of course, there may be other locations where
module access is desired. The following examples demonstrate creating and initializing pointers to
access existing modules:

DigitalIO* pDigIO = Engine.IOModList.GetDigitalIO (m_IOMOD) ;
AnalogIO* pAnalogIO = Engine.IOModList.GetAnalogIO (m_IOMOD) ;
CIOMod* pMod = Engine.IOModList.GetIOMod (DIGITAL, m_IOMOD) ;

4.2.1 10Device

The 10Device class is the parent of the AnaloglO and DigitallO classes. As such, it contains
methods and data that are common to both Analog and Digital 1/0 Modules.

4.2.1.1 StartRequest()

This method is used to register the module’s need to start. The Engine starts all modules that have
requested such when recording is started. Note: “starting” a module translates to configuring the
module, commanding the module to run, and starting to listen for unsolicited events.

I2CCODE StartRequest () ;
Parameters

None.
Return Value

On success, 12C_OK is returned. The possible values for 2CCODE and their meanings are
defined as follows (from Engine\i2cmgr.h):

12C_OK - Success/no error.

12C_NAK - Message received negative acknowledgment.
12C_TIMEOUT - Timed-out waiting for response.

12C_LOST - Lost arbitration of the bus.

ARBITRATION

Unused.
An error occurred on the 12C bus. Specifically, a misplaced start
or stop condition was detected.

I2C_OVERFLOW
12C_BUSERROR

12C_RXERROR - Error during receive. Specifically, receive did not contain start
bit.
12C_SLAVETX - Data was received in the slave transmit mode. Xpert only

46

supports the master transmit mode.
I2C_CHECKSUM - Computed checksum did not match received checksum.

12C_STOP - A premature stop was detected when more bytes were expected.
12C_BUSBUSY - Could not access bus.
12C_RESTART - Received start bit indicating arrival of a new message while

reading in a message.
I2C_BAD _CHNL - The commanded channel is not valid.

Header
Engine\l2CDeviceClass.h

4.2.1.2 StopRequest()

This method is used to register a request to command the i/o0 module to stop (send it a stop
command opcode). When the number of stop requests total the number of previous start requests,
the stop is commanded.

I2CCODE StopRequest();
Parameters

None.
Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for StartRequest().

Header
Engine\l2CDeviceClass.h

4.2.1.3 AuxOnRequest()

This method requests that the “Aux” line (switched battery) be turned on. It is a “request” (as
opposed to command) since the number of on requests versus the number of off requests (via
AuxOffRequest) determines the state of the line. If more on requests than off requests have been
received, the line will be switched on.

I2CCODE AuxOnRequest () ;
Parameters

None.
Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for StartRequest().

Header
Engine\l2CDeviceClass.h

47

4.2.1.4 AuxOffRequest()

This method requests that the “Aux” line (switched battery) be turned off. It is a “request” (as
opposed to command) since the number of on requests (via AuxOnRequest) versus the number of
off requests determines the state of the line. If more off requests than on requests have been
received, the line will be switched off.

I2CCODE AuxOffRequest () ;
Parameters

None.
Return Value

On success, 12C_OK is returned. The other possible values for 2CCODE and their meanings
are defined in the entry for StartRequest().

Header
Engine\l2CDeviceClass.h

4.2.2 AnaloglO

The AnaloglO class contains methods and data specific to Analog I/O Modules. Many of the
methods are measurement command methods that depend on the module having been previously
configured using one or more of the configuration command methods. The configuration consists
of nine (9) parameters including channel, gain, excitation parameters, etc. Not all measurement
commands require that all configuration parameters be set. The tables below define which
parameters are required by which measurement commands, and which functions are used to set
parameters, respectively.

Meas. Command Configuration Parameter (see key for description)

Ch G S/ID E EV ECh EH FN WD
SingleVoltageReading X X X X X X X X X
DoubleVoltageReading X X X X X X X X X
SingleCurrentReading X X X X X X X X
SingleCurrent420maReading X X X X
SingleResistanceDCReading X X X X X X X X X
SingleResistance ACReading X X X X X X X X X
SingleThermistorReading X X X X X X X X X
RMY oungReading

Table 1: Analog Measure Config Requirements
Param | Description Default Value | Functions to Set Parameter
Ch - Measurement Channel N/A None. Provided by measurement command.
G - Gain 1 SetConfigurationGain()
S/ID - Single or Differential Single SetConfigurationSingleEnded(),
SetConfigurationDifferential()

E - Excitation On/Off OFF SetExcitationVVoltageOn(), SetExcitationVoltageOff()
EV - Excitation Voltage 0 SetExcitationVoltage()
ECh - Excitation Channel 0 SetExcitationChannel()

48

Param | Description Default Value | Functions to Set Parameter

EH - Excitation Hold 0 SetConfigurationExcitationHoldOn(),
SetConfigurationExcitationHoldOff()

FN - Filter Notch 60 hz SetFilterNotch()

WD - Warm-Up Delay 50 ms SetWarmUpDelay()

Table 2: Config Parameters Defined

Measurements are typically made in TModule::Execute(). While there are several places the
configuration could be commanded, the best place to do it is also in TModule::Execute(), just
before the commands to take the measurement. This ensures that reconfigurations due to other
module users do not interfere.

The following sections describe the methods provided by the AnaloglO class.

4.2.2.1 SingleVoltageReading()
This method is used to perform a voltage measurement on the indicated channel.
I2CCODE SingleVoltageReading (

const CAnalogChannelé& channel,
double& voltage measurement) ;

Parameters
channel - The channel on which to measure.
voltage - Reference to a double in which to store the measurement.
measurement

Return Value

On success, 12C_OK is returned. The other possible values for 2CCODE and their meanings
are defined in the entry for IODevice::StartRequest().

Header
Engine/AnaloglO.h

4.2.2.2 DoubleVoltageReading()
This method is used to perform a double voltage measurement on the indicated channel.

I2CCODE DoubleVoltageReading (
const CAnalogChannel& voltage channel,
double& voltage measurement,
double& excitation measurement) ;

Parameters
voltage _channel - The channel on which to measure.
voltage - The voltage measured on the voltage channel.
measurement
excitation_ - The voltage measured on the excitation channel.
measurement

49

Return Value

On success, 12C_OK is returned. The other possible values for 2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/AnaloglO.h

4.2.2.3 SingleCurrentReading()
This method is used to perform a current measurement on the indicated channel.
I2CCODE SingleCurrentReading (

const CAnalogChannelé& channel,
double& current measurement) ;

Parameters
channel - The channel on which to measure.
current_ - Reference to a double in which to store the measurement.
measurement

Return Value

On success, 12C_OK is returned. The other possible values for 2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/AnaloglO.h

4.2.2.4 SingleCurrent420maReading()
This method is used to perform a passive current measurement on the indicated channel.
I2CCODE SingleCurrent420maReading (

const CAnalogChannelé& channel,
double& current measurement) ;

Parameters
channel - The channel on which to measure.
current_ - Reference to a double in which to store the measurement.
measurement

Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for IODevice::StartRequest().

Header
Engine/AnaloglO.h

50

4.2.2.5 SingleResistanceDCReading()

This method is used to perform a resistance measurement using DC excitation on the indicated
channel.

I2CCODE SingleResistanceDCReading (
const CAnalogChannelé& channel,
double& resistancedc measurement) ;

Parameters
channel - The channel on which to measure.
resistancedc_ - Reference to a double in which to store the measurement.
measurement

Return Value

On success, 12C_OK is returned. The other possible values for 2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/AnaloglO.h

4.2.2.6 SingleResistanceACReading()

This method is used to perform a resistance measurement using AC excitation on the indicated
channel.

I2CCODE SingleResistanceACReading (
const CAnalogChannelé& channel,
double& resistanceac measurement) ;

Parameters
channel - The channel on which to measure.
resistanceac_ - Reference to a double in which to store the measurement.
measurement

Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/AnaloglO.h

4.2.2.7 SingleThermistorReading()
This method is used to perform a thermistor measurement on the indicated channel.
I2CCODE SingleThermistorReading (

const CAnalogChannel& channel,
double& thermistor measurement) ;

Parameters

51

channel - The channel on which to measure.
thermistor_ - Reference to a double in which to store the measurement.
measurement

Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/AnaloglO.h

4.2.2.8 RMYoungReading()
This method is used to perform an RMYoung measurement.
I2CCODE RMYoungReading(

UINT32& count,
UINT32& time);

Parameters
count - The count result.
time - Time of the measured count.

Return Value

On success, 12C_OK is returned. The other possible values for 2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/AnaloglO.h

4.2.2.9 SetConfigurationGain()
This method is used to set the gain configuration component for the indicated channel.
void SetConfigurationGain (

const CAnalogChannelé& Channel,
int Gain);

Parameters
Channel - The channel to configure.
Gain - The gain to set. Valid values are 1 and 16.

Return Value
None.

Header
Engine/AnaloglO.h

52

4.2.2.10 SetConfigurationSingleEnded()

This method is used to set the S/D configuration component of the indicated channel to S (single
ended).

void SetConfigurationSingleEnded (
const CAnalogChannelé& Channel);

Parameters
Channel - The channel to configure.
Return Value
None.
Header
Engine/AnaloglO.h

4.2.2.11 SetConfigurationDifferential()

This method is used to set the S/D configuration component of the indicated channel to D
(differential).

void SetConfigurationDifferential (
const CAnalogChannelé& Channel);

Parameters
Channel - The channel to configure.
Return Value
None.
Header
Engine/AnaloglO.h

4.2.2.12 SetConfigurationExcitationHoldOn()

This method is used to set the excitation hold configuration component of the indicated channel to
On.

I2CCODE SetConfigurationExcitationHoldOn (
const CAnalogChannel& Channel);

Parameters
Channel - The channel to configure.
Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for IODevice::StartRequest().

Header
Engine/AnaloglO.h

53

4.2.2.13 SetConfigurationExcitationHoldOff()

This method is used to set the excitation hold configuration component of the indicated channel to
Off.

I2CCODE SetConfigurationkExcitationHoldOff (
const CAnalogChannelé& Channel);

Parameters
Channel - The channel to configure.
Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/AnaloglO.h

4.2.2.14 SetExcitationChannel()

This method is used to set the excitation channel configuration component of the indicated
measurement channel.

void SetExcitationChannel (
const CAnalogChannel& Channel,
const CAnalogChannel& ExcitationChannel);

Parameters
Channel - The measurement channel to configure.
ExcitationChannel - The channel to use as an excitation channel.

Return Value
None.

Header
Engine/AnaloglO.h

4.2.2.15 SetExcitationVoltage()

This method is used to set the excitation voltage configuration component of the indicated
measurement channel.

void SetExcitationVoltage (
const CAnalogChannel& Channel,
int Voltage);

Parameters
Channel - The measurement channel to configure.
Voltage - The desired excitation voltage. Valid range: -5 to +5.

Return Value

54

None.
Header
Engine/AnaloglO.h

4.2.2.16 SetExcitationVVoltageOn()

This method is used to set the excitation voltage On/Off configuration component of the indicated
measurement channel to On.

void SetExcitationVoltageOn (
const CAnalogChannelé& Channel);

Parameters
Channel - The measurement channel to configure.
Return Value
None.
Header
Engine/AnaloglO.h

4.2.2.17 SetExcitationVVoltageOff()

This method is used to set the excitation voltage On/Off configuration component of the indicated
measurement channel to Off.

void SetExcitationVoltageOff (
const CAnalogChannel& Channel);

Parameters
Channel - The measurement channel to configure.
Return Value
None.
Header
Engine/AnaloglO.h

4.2.2.18 SetFilterNotch()

This method is used to set the filter notch configuration component of the indicated channel. Note
that whenever the notch is changed, the A/D module must be recalibrated. The Xpert takes care of
this recalibration automatically, however, it may take 3-5 seconds for the recalibration to complete.
For this reason, don’t change the filter notch from the default value unless there is time for this
recalibration or it is changed for all the sensors that will be measured.

void SetFilterNotch (
const CAnalogChannel& Channel,
UINT16 FilterNotch);

55

Parameters

Channel - The channel to configure.
FilterNotch - The desired filter notch in Hz. Valid range: 10 to 2000.
Return Value
None.
Header

Engine/AnaloglO.h

4.2.2.19 SetWarmUpDelay()

This method is used to set the warm-up delay configuration component of the indicated channel.

void SetWarmUpDelay (
const CAnalogChannel& Channel,
int WarmUpDelay) ;

Parameters

Channel - The channel to configure.
WarmUpDelay - The desired warm-up delay in ms. Valid range: 0 to Oxffff.

Return Value
None.

Header
Engine/AnaloglO.h

4.2.2.20 SetPolyAdjust()

When calibrations are applied to voltage measurements that are close to 0, the result can be less
accurate than the raw measurement. This method controls whether the calibration is applied.

I2CCODE SetPolyAdjust (
const CAnalogChannelé& Channel,
BOOL poly adjust);

Parameters
Channel - The channel to configure.
poly_adjust - Set to TRUE to cause the polynomial calibration to be applied.

Set to FALSE to not apply the polynomial calibration.
Return Value

On success, 12C_OK is returned. The other possible values for 2CCODE and their meanings

are defined in the entry for 10Device::StartRequest().
Header
Engine/AnaloglO.h

56

4.2.2.21 CmdSetAux1()
This method sets the digital output Aux1 to either high or low.

I2CCODE CmdSetAuxl (
bool High);

Parameters

High - Set to true to cause Aux1 to be set high. Set to false to cause
Auxl1 to be set low.

Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/AnaloglO.h

4.2.2.22 CmdPulseOut()

This method causes the digital output Aux1 to pulse either high or low, for an indicated time
period, and then revert back to its previous state.

I2CCODE CmdPulseOut (
bool High,
UINT16 PulseWidth ms);

Parameters
High - Set to true to cause Aux1 to be pulsed high. Set to false to cause
Aux1 to be pulsed low.
PulseWidth_ms - The width of the pulse in ms.

Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/AnaloglO.h

4.2.2.23 ReadResistance()

This method configures the channel with the specified excitation data and performs a thermistor
reading to measure resistance.

I2CCODE ReadResistance (
const CAnalogChannel& Channel,
const CAnalogChannelé& nExcitationVoltage,
double& ReadData) ;

Parameters

Channel - The channel on which to measure resistance.

57

nExcitationVVoltage - The excitation channel.
ReadData - The resistance result.

Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/AnaloglO.h

4.2.2.24 ReadFrequency()

This method is used to obtain a frequency measurement from an RMYoung sensor. The analog
module has a single channel capable of measuring the output of an RMYoung type wind speed
sensor. This type of sensor has a frequency less than 1000 hz and a low level output signal.

I2CCODE ReadFrequency (
int Period,
bool TakeTwoReadings,
double& Data);

Parameters

Period - When taking two readings, this contains the time in milliseconds
between the two readings. Ignored when TakeTwoReadings is
false.

TakeTwoReadings - When true, instructs the method to make two readings with Period
amount of time between them. When false, uses the last reading
made during the last call to this method as the initial reading.

Data - The frequency result, in Hz.

Return Value

On success, 12C_OK is returned. The other possible values for 2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/AnaloglO.h

4.2.3 DigitallO

The DigitallO class contains methods and data specific to Digital /0 Modules. The following
sections describe the methods provided by this class.

4.2.3.1 ReadCount()
This method reads the count associated with the indicated channel.

I2CCODE ReadCount (
const CDigitalChannel& Channel,
UINT32& CountValue);

Parameters

58

Channel - The channel from which to read the count.
CountValue - The count result.

Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/DiglO.h

4.2.3.2 ReadCountAndTime()

This method reads the count associated with the indicated channel, along with the time at which the
count was detected. The time is not an absolute time but is relative within each 1/0 module. The
time has units of 1/32768 seconds and can be used to compute frequency (delta counts / delta time).

I2CCODE ReadCountAndTime (
const CDigitalChannelé& Channel,
UINT32& CountValue,
UINT32& TimeValue) ;

Parameters
Channel - The channel from which to read the count.
CountValue - The count result.
TimeValue - The time result in units of 1/32768 seconds.

Return Value

On success, 12C_OK is returned. The other possible values for 2CCODE and their meanings
are defined in the entry for IODevice::StartRequest().

Header
Engine/DiglO.h

4.2.3.3 ReadFilteredInputDataBits()
This method reads the input state of the indicated channel.
I2CCODE ReadFilteredInputDataBits (

const CDigitalChannelé& Channel,
BOOL& Data);

Parameters
Channel - The channel to read.
Data - TRUE if the input is high. FALSE if the input is low.

Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for IODevice::StartRequest().

Header

59

Engine/DiglO.h

4.2.3.4 ReadAllFilteredInputDataBits()
This method reads the input state of all inputs and stores the result as a bitmap within an integer.

I2CCODE ReadAllFilteredInputDataBits (
int& Data);

Parameters

Data - An integer representing the input state for all inputs. Test bits
using bit mask operations to discover which inputs are high and
which are low.

Return Value

On success, 12C_OK is returned. The other possible values for 2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/DiglO.h

4.2.3.5 SetSamplingSpeed()

This method is used to set the rate at which the input lines are sampled when the module is running.
Always follow this command with a call to Configure() to actually send the new configuration to
the module.

I2CCODE SetSamplingSpeed(
double speed ms);

Parameters

speed_ms - The rate in milliseconds at which the input lines should be
sampled. Valid range: 0.489 to 1985.9.

Return Value

On success, 12C_OK is returned. The other possible values for 2CCODE and their meanings
are defined in the entry for IODevice::StartRequest().

Header
Engine/DiglO.h

4.2.3.6 SetLineAslInput()

This method is used to set the indicated channel to an input. Always follow this command with a
call to Configure() to actually send the new configuration to the module.

void SetLineAsInput (
const CDigitalChannel& Channel);

Parameters

60

Channel - The channel to set as an input.
Return Value
None.
Header
Engine/DiglO.h

4.2.3.7 SetLineAsOutput()

This method is used to set the indicated channel to an output. Always follow this command with a
call to Configure() to actually send the new configuration to the module.

void SetLineAsOutput (
const CDigitalChannel& Channel);

Parameters
Channel - The channel to set as an output.
Return Value
None.
Header
Engine/DiglO.h

4.2.3.8 SetOutputData()

This method is used to set the indicated channel’s output either high or low. Always follow this
command with a call to Configure() to actually send the new configuration to the module.

void SetOutputData (
const CDigitalChannelé& Channel,
bool Value);

Parameters
Channel - The channel to set.
Value - If true, the indicated channel will be set high following the next

call to Configure().If false, the indicated channel will be set low
following the next call to Configure().

Return Value
None.

Header
Engine/DiglO.h

4.2.3.9 InvertlO()

This method is used to command the module to invert the indicated channel’s input. Always follow
this command with a call to Configure() to actually send the new configuration to the module.

61

BOOL InvertIO(
const CDigitalChannel& Channel);

Parameters
Channel - The channel to invert.
Return Value
On success, TRUE is returned, otherwise, FALSE is returned.
Header
Engine/DiglO.h

4.2.3.10 UnlnvertlO()

This method is used to command the module to uninvert the indicated channel’s input. Always
follow this command with a call to Configure() to actually send the new configuration to the
module.

BOOL UnInvertIO(
const CDigitalChannel& Channel);

Parameters
Channel - The channel to invert.
Return Value
On success, TRUE is returned, otherwise, FALSE is returned.
Header
Engine/DiglO.h

4.2.3.11 SetAsShaftEncoder()

This method is used to set the indicated channel to act as a shaft encoder input. Always follow this
command with a call to Configure() to actually send the new configuration to the module. The shaft
encoder input is designed to measure sensors with a quadrature output. The quadrature output uses
two channels. The I/0 module can measure the quadrature output to track the measurement as it
goes up and/or down.

void SetAsShaftEncoder (
const CDigitalChannels& Channel) ;

Parameters
Channel - The channel to act as a shaft encoder input.
Return Value
None.
Header
Engine/DiglO.h

62

4.2.3.12 SetAsCounter()

This method is used to set the indicated channel to act as a counter input. A counter input is
designed for simple switch closure devices such as tipping buckets or frequency type devices such
as wind sensors. Always follow this command with a call to Configure() to actually send the new
configuration to the module.

void SetAsCounter (
const CDigitalChannel& Channel);

Parameters
Channel - The channel to act as a counter input.
Return Value
None.
Header
Engine/DiglO.h

4.2.3.13 ConfigureFilters()

This method is used to set the value of the digital filter to the counter associated with the indicated
channel. The filter is an up-down counter that counts between 0 and the specified threshold value.
The counter will not count up if it is at its upper threshold, and it won’t count down when its count
is zero. The output of the of the filter only changes state when the counter reaches zero or its upper
threshold. Thus, if the output state of the filter is a one, it will stay a one until the counter reaches
zero. It will then remain zero until the counter counts up to its upper threshold.

Always follow this command with a call to Configure() to actually send the new configuration to
the module.

BOOL ConfigureFilters(
const CDigitalChannel& Channel,
int FilterValue);

Parameters
Channel - The channel to act as a counter input.
FilterValue - The new filter value for the indicated channel. Valid range: 1 to

255.
Return Value
On success, TRUE is returned, otherwise, FALSE is returned.
Header
Engine/DiglO.h

4.2.3.14 SetSensitivityHigh()

This method is used to set the sensitivity of the indicated RMYoung channel to high. Always
follow this command with a call to Configure() to actually send the new configuration to the
module.

63

BOOL SetSensitivityHigh (
const CDigitalChannel& Channel);

Parameters
Channel - The channel on which to set sensitivity. Must be either 6 or 7.
Return Value
On success, TRUE is returned, otherwise, FALSE is returned.
Header
Engine/DiglO.h

4.2.3.15 SetSensitivityLow()

This method is used to set the sensitivity of the indicated RMYoung channel to low. Always follow
this command with a call to Configure() to actually send the new configuration to the module.

BOOL SetSensitivityLow (
const CDigitalChannel& Channel);

Parameters
Channel - The channel on which to set sensitivity. Must be either 6 or 7.
Return Value
On success, TRUE is returned, otherwise, FALSE is returned.
Header
Engine/DiglO.h

4.2.3.16 AlarmOnSingleEdge()

This method is used to set the alarm associated with the indicated channel to count only a single
edge (rising or falling depends on the inversion state). Always follow this command with a call to
Configure() to actually send the new configuration to the module.

BOOL AlarmOnSingleEdge (
const CDigitalChannel& Channel);

Parameters
Channel - The channel on which to set the alarm edge control.
Return Value
On success, TRUE is returned, otherwise, FALSE is returned.
Header
Engine/DiglO.h

64

4.2.3.17 AlarmOnBothEdges()

This method is used to set the alarm associated with the indicated channel to count both edges of a
signal edge. Always follow this command with a call to Configure() to actually send the new
configuration to the module.

BOOL AlarmOnBothEdges (
const CDigitalChannel& Channel);

Parameters
Channel - The channel on which to set the alarm edge control.
Return Value
On success, TRUE is returned, otherwise, FALSE is returned.
Header
Engine/DiglO.h

4.2.3.18 Configure()
This method is used to send the current configuration to the module.

I2CCODE Configure();
Parameters

None.
Return Value

On success, 12C_OK is returned. The other possible values for 2CCODE and their meanings
are defined in the entry for IODevice::StartRequest().

Header
Engine/DiglO.h

4.2.3.19 PulseOut()

This method is used to pulse an output channel, either high or low, for a specified duration. Note
that the channel line state returns to that prior to the pulse (e.g., if line was high prior to pulse, and
the specified pulse direction is high, then no change in line state would be seen).

The channel must be configured for pulse operation prior to using this function. Call
SetSamplingSpeed() to set the timer resolution (typically 0.5), call SetOutputData() to set the
desired pre-pulse state of the line, and call Configure() to actually send the line state to the DIO
module. The module must be running, so blocks should call StartRequest() in Initialize(), while
non-block programs can call StartRequest() followed by MasterStart().

I2CCODE PulseOut (
const CDigitalChannel& Channel,
double TimeMS,
bool Pulselow);

Parameters

65

Channel - The channel to pulse.

TimeMS - The number of milliseconds to pulse.
PulseLow - The direction of the pulse. When true, the channel pulses low, i.e.,
to ground.

Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/DiglO.h

4.2.3.20 Readlnput()
This method reads and returns the state of the indicated channel.

I2CCODE ReadInput (
const CDigitalChannelé& Channel,
bool Invert,
boolé& Data);

Parameters
Channel - The channel to read.
Invert - Flag to invert result. If true, the data read from the channel is
inverted before returning. If false, no inversion is applied.
Data - The result of the read and inversion (if applicable).

Return Value

On success, 12C_OK is returned. The other possible values for 2CCODE and their meanings
are defined in the entry for IODevice::StartRequest().

Header
Engine/DiglO.h

4.2.3.21 ReadFrequency()
This method is used to obtain a frequency measurement from the indicated channel.

I2CCODE ReadFrequency (
const CDigitalChannel& Channel,
int Period,
bool TakeTwoReadings,
doubleé& Data);

Parameters

Channel - The channel on which to measure frequency.

Period - When taking two readings, this contains the time in milliseconds
between the two readings. Ignored when TakeTwoReadings is
false.

TakeTwoReadings - When true, instructs the method to make two readings with Period

66

amount of time between them. When false, uses the last reading
made during the last call to this method as the initial reading.
Data - The frequency result.

Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/DiglO.h

4.2.4 DisplaylO

The DisplaylO class contains methods and data specific to interacting with the Xlite’s front-panel
12C Display (not the GUI display!). The Xlite display has 2 lines of 20 characters each.

Normally, an SLL obtains a pointer to the DisplaylO object representing the display through a
callback mechanism. An SLL must contain the following three exports in order for the callback
mechanism to work:

extern "C" declspec(dllexport) bool IsMainMenu () {..}
extern "C" declspec(dllexport) LPCTSTR GetMenuEntry() {..}
extern "C" declspec(dllexport) bool DisplayProc(DisplayIO* pDisp) {..}

IsMainMenu(): Return true to indicate the sll's exported menu is a main menu, i.e., to be shown
instead of the standard menu. If more than one sll defines a new main menu, they are each shown in
the order loaded.

GetMenuEntry():Return a string to be used as the text displayed for this menu entry in the top-level
standard menu. Main menus are still listed as a menu entry in the top-level Xlite menu.

DisplayProc(): This is the function to be called when the menu is selected. The function should use
pDisp to read and write the display. Return true when the standard menu should be shown after this
menu is exited. Return false to cause the Xlite display to turn-off after this menu is exited.

See the Samples section for an example of hooking into the Xlite display.
The following sections describe the methods provided by this class.

4.2.4.1 Write()

This method writes a string on the 12C display. When line O (the top line) is being written, the
bottom line is cleared.

void Write (
LPCTSTR sz,
int iLine = 0,
bool bCentered = true);

Parameters
sz - The string to display.
iLine - The number of the line on which to write the string. Valid range:

0-1.

67

bCentered - When “true”, the string written is centered on the display. When
“false”, the string is written left justified. This parameter defaults
to true.

Return Value
None.
Header
Engine/ DisplaylO.h

4.2.4.2 WrStringToLCD()
This method writes a string on the 12C display.

I2CCODE WrStringToLCD (
bool bClrB4Wr,
BYTE byLineNum,
BYTE byCurPosition,
LPCTSTR szDispString,

bool bCenter = true);
Parameters

bCIlrB4Wr - When “true”, the display will be cleared before the string is
written. When false, the display is not cleared before the string is
written.

byLineNum - The number of the line on which to write the string. Valid range:
1-2.

byCurPosition - The number of the column on which to write the string. Valid
range: 0 — 19.

szDispString - the string to write to display.

bCenter - When “true”, the string written is centered on the display. When
“false”, the string is written left justified. This parameter defaults
to true.

Return Value

On success, 12C_OK is returned. The other possible values for 2CCODE and their meanings
are defined in the entry for IODevice::StartRequest().

Header
Engine/ DisplaylO.h

4.2.4.3 DisplayLines()
This method writes strings to both lines of the 12C display.
I2CCODE DisplayLines (
LPCTSTR szLinel,

LPCTSTR szLine2,
bool bCenter = true);

Parameters

68

szLinel - The string to write to line 1 of the display.

szLine2 - The string to write to line 2 of the display.

bCenter - When “true”, the strings are written centered on the display.
When “false”, the strings are written left justified. This parameter
defaults to true.

Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/ DisplaylO.h

4.2.4.4 ShowCursor()
This method shows the cursor at the position specified.
I2CCODE ShowCursor (

BYTE LineNum,
BYTE CurPosition);

Parameters
LineNum - The number of the line on which to display the cursor. Valid
range: 1 — 2.
CurPosition - The number of the column on which to display the cursor. Valid
range: 0 — 19.

Return Value

On success, 12C_OK is returned. The other possible values for 2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/ DisplaylO.h

4.2.4.5 HideCursor()
This method hides the cursor.
T2CCODE HideCursor () ;
Parameters
None.
Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for 10Device::StartRequest().

Header
Engine/ DisplaylO.h

69

4.2.4.6 StartBlinkingCursor()
This method blinks the cursor at the position specified.
I2CCODE StartBlinkingCursor (

BYTE LineNum,
BYTE CurPosition);

Parameters
LineNum - The number of the line on which to blink the cursor. Valid range:
1-2.
CurPosition - The number of the column on which to blink the cursor. Valid
range: 0 — 19.

Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/ DisplaylO.h

4.2.4.7 StopBlinkingCursor()
This method stops the cursor from blinking.
I2CCODE StopBlinkingCursor () ;
Parameters
None.
Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/ DisplaylO.h

4.2.4.8 ClearDisplay()
This method clears the 12C display.
I2CCODE ClearDisplay () ;
Parameters
None.
Return Value

On success, 12C_OK is returned. The other possible values for I2CCODE and their meanings
are defined in the entry for IODevice::StartRequest().

Header

70

Engine/DisplaylO.h

4.2.4.9 DisplayOff()
This method turns the 12C display off.
T2CCODE DisplayOff () ;
Parameters
None.
Return Value

On success, 12C_OK is returned. The other possible values for 2CCODE and their meanings
are defined in the entry for I0Device::StartRequest().

Header
Engine/ DisplaylO.h

4.2.4.10 KeyPressed()

This method checks to see if a key press from the 12C display is waiting to be processed by a call
Read().

bool KeyPressed();
Parameters
None.
Return Value
If a key press is waiting, true is returned. Otherwise, false is returned.
Header
Engine/ DisplaylO.h

4.2.4.11 PressKey()
Sends a key to the display, just as if the user had pressed a key.

void PressKey (
char ch);

Parameters

ch - The character to send to the display. The characters representing
the standard buttons are ‘<’, >’ and ‘*’. The standard escape
character, used to back out of most display routines, has the value
decimal 27.

Return Value
None.
Header

to

71

Engine/ DisplaylO.h

4.2.4.12 Flush()
Deletes any keys in the input buffer that have not yet been processed.

void Flush();
Parameters
None.
Return Value
None.
Header
Engine/ DisplaylO.h

4.2.4.13 Read()

This method attempts to read a character from the 12C display. If a character is not immediately
available, an efficient wait state is entered until either a character arrives, or the specified timeout
expires. Note: if a tiemout occurs, ResetTimeout() must be called before a call to Read() will
succeed.

bool Read(
charé& ch,
long 1Timeout) ;

Parameters
ch - A reference to the variable to contain the character read.
ITimeout - The number of milliseconds the routine should wait for a

character.
Return Value
If a character is read, true is returned. Otherwise, false is returned.
Header
Engine/ DisplaylO.h

4.2.4.14 EditFl